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A major challenge in architectural acoustics is the unification of diffraction

models and geometric acoustics. For example, geometric acoustics is insufficient to

quantify the scattering characteristics of acoustic diffusors. Typically the

time-independent boundary element method (BEM) is the method of choice. In

contrast, time-domain computations are of interest for characterizing both the

spatial and temporal scattering characteristics of acoustic diffusors. Hence, a

method is sought that predicts acoustic scattering in the time-domain.

A prediction method, which combines an advanced image source method and an

edge diffraction model, is investigated for the prediction of time-domain scattering.

Adaptive tetrahedral tracing is an advanced image source method that generates

image sources through an adaptive process. Propagating tetrahedral beams adapt

to ensonified geometry mapping the geometric sound field in space and along

boundaries. The edge diffraction model interfaces with the adaptive tetrahedral

tracing process by the transfer of edge geometry and visibility information.

Scattering is quantified as the contribution of secondary sources along a single or

multiple interacting edges. Accounting for a finite number of diffraction

permutations approximates the scattered sound field. Superposition of the

geometric and scattered sound fields results in a synthesized impulse response

between a source and a receiver.

Evaluation of the prediction technique involves numerical verification and

numerical validation. Numerical verification is based upon a comparison with
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analytic and numerical (BEM) solutions for scattering geometries. Good agreement

is shown for the selected scattering geometries. Numerical validation is based upon

experimentally determined scattered impulse responses of acoustic diffusors.

Experimental data suggests that the predictive model is appropriate for

high-frequency predictions. For the experimental determination of the scattered

impulse response the merits of a maximum length sequence (MLS) versus a

logarithmic swept-sine (LSS) are compared and contrasted. It is shown that a LSS

is an appropriate stimuli for testing acoustic diffusors by comparing against

scattered relative levels measured by a MLS signal.
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Chapter 1

Introduction

A major challenge in architectural acoustics is the unification of diffraction models

and geometric acoustics (Vorländer, 2008, p. 207). Geometric acoustics

approximates the high frequency portion of an acoustic sound field, conceptualizing

sound as the passage of rays, or as an ensemble of physical and image sources.

Diffraction models account for the lower frequency portion of the sound field by

predicting the scattering of sound from either geometric discontinuities or

shadowing edges. Geometric acoustics alone is insufficient to characterize the sound

field for a large number of elementary cases. For example, predicting the sound field

of a source in the vicinity of a finite reflector is far from accurate with a geometric

acoustic prediction. Alternatively, coupling a diffraction model with geometric

acoustics better approximates the sound field. The unification of geometric

acoustics and a diffraction model is one particular challenge addressed in this

dissertation. In the context of this challenge acoustic diffusors serve as the primary

case study for the combined model.

An acoustic diffusor is an architectural element that spreads the reflection of

sound spatially and/or temporally (Schroeder, 1975; Schroeder and Gerlach, 1976;

Schroeder, 1979). The ideal acoustic diffusor scatters sound energy into all

1
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directions uniformly at all frequencies and temporally stretches the reflected sound

into infinite time. However, physical limitations imposed by finite geometries

constrains the extent of spatial and temporal spreading of reflected sound energy.

Notwithstanding such limitations targeted diffusion is possible by crafting a surface

in a specific manner to achieve a desired performance. The manner of crafting a

surface for acoustic diffusion is informed by a knowledge of acoustic boundary

interactions.

Variations in the geometric profile of a surface results in delayed reflections and

diffraction. Similarly, variations in surface impedance results in the same

propagation mechanisms with the possible addition of acoustic absorption. In

contrast to specular reflection the combined effect of either delayed reflections or

diffraction results in varying degrees of spatial and/or temporal spreading of sound

energy. Anticipating the performance of an acoustic diffusor is an essential element

in the development and evaluation process. Thus, an elementary basis for the

prediction of scattering by acoustic diffusors is to compute the effects of delayed

reflections and diffraction.

Of the numerical techniques available for predicting scattering by acoustic

diffusors the most common technique is the boundary element method (BEM) (Cox

and Lam, 1994; Cox, 1995). A central aspect of the BEM is the discretization of a

contour for the purpose of solving the Kirchhoff–Helmholtz equation. The solution

converges provided that the discretized elements of the contour are of the order of a

fractional wavelength. As shorter and shorter wavelengths are modeled a

corresponding increase in elements are required for solution convergence. Given

infinite computational resources this aspect of the BEM is of no concern, but the

finite computational resources available to the curious investigator or designer

imposes a restriction for broadband prediction. Thus, an opportunity to minimize,

or eliminate altogether, the discretization of space is an appealing approach to
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broadband scattering prediction.

1.1 Research Objectives

The purpose of this research is to address the problem of predicting scattering by

acoustic diffusors over a broadband frequency range. Combining the concepts of

geometric acoustics and the viewpoint that an acoustic diffusor is an ensemble of

scattering edges [cf. (Kinney et al., 1983; Novarini and Medwin, 1985)] leads to a

particularly useful approach. Three primary challenges form the core of investigating

this approach. In the context of predicting scattering, the first challenge is to define

a relevant algorithm for geometric acoustics. The second challenge is to investigate

the manner of unifying the geometric acoustic method, defined in the first challenge,

with an edge diffraction model. Finally, the last challenge is to numerically verify,

and validate the proposed approach for predicting scattering by acoustic diffusors.

Each of these three challenges are cast into research objectives below.

The first objective is to define a relevant algorithm for geometric acoustics in the

context of scattering prediction. Existing geometric acoustic methods include image

sources (Allen and Berkley, 1979), ray tracing (Kulowski, 1985), and variations of

beam tracing. Variations of beam tracing include classical beam tracing (Lewers,

1993), cone tracing (Dalenbäck, 1996), and adaptive beam tracing (Campo et al.,

2000; Drumm and Lam, 2000). Inherently the image source method, ray tracing,

classical beam tracing, and cone tracing lack the capability for diffraction prediction

since diffracting edges are not precisely identified (Stephenson, 1996). Alternatively,

adaptive beam tracing has many merits to recommend it for scattering predictions.

The adaptive nature of the method lends itself to the precise identification of

scattering edges, and the spatial coherence of propagating beams enables the use of

a point source and a point receiver. As opposed to image sources, or ray tracing,
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implementation of the adaptive beam tracing method presents a significant

challenge due to the sparsity of algorithmic details. Therefore, the algorithm for

adaptive beam tracing is to be defined as clearly and thoroughly for the purpose of

scattering prediction.

The second objective is to investigate the unification of adaptive beam tracing

and a secondary source model for edge diffraction (Svensson et al., 1999; Svensson

and Calamia, 2006). Identifying common elements between geometric acoustics and

edge diffraction serves as a basis for unifying the two methods. For any significantly

complex surface, scattering is a mutual interaction of edges, surfaces, and vice versa.

It is conceivable that the number of scattering combinations reaches an

astronomical magnitude. Thus, the combinatorial nature of surface scattering

necessitates a form of approximation. The manner of approximating total scattering

and the issue of interfacing geometric acoustics and edge diffraction are the primary

topics of this objective.

Lastly, the third objective is to numerically verify, and validate the

computational approach investigated in objectives one and two. Numerical

verification is conducted by comparing against analytic and numerical solutions of

scattering geometries. Elementary scattering configurations serve as an initial check

upon the accuracy of the proposed method. Numerical validation is achieved by a

comparison against experimental results for diffusor scattering. The scattered

impulse response is experimentally determined by a goniometer (Cox and

D’Antonio, 2009, ch. 4). An acoustic excitation, such as a maximum length

sequence (MLS), or a logarithmic swept–sine (LSS), is emitted from a loudspeaker,

interacts with a diffusor at the center of a microphone array, and the back–scattered

signal is captured by the array. The scattered impulse response is computed

through digital signal processing techniques. Results gathered by the goniometer are

compared against scattering predictions.
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1.2 Numerical Computation of Acoustic

Scattering Overview

Prediction methods for acoustic scattering are numerous with varying forms of

assumptions, approximations, and conceptual approaches. Of all the methods

available each can be categorized into one of two approaches: approximately solve

the wave equation, or employ a semi-analytical technique. For low frequencies,

approximate solutions to the wave equation are possible, but the computational

demands increase as the analysis goes higher in frequency (Bies and Hansen, 2009,

p. 618). Alternatively, semi-analytical approaches utilize analytical solutions to

specific scattering geometries. An excellent review of methods for scattering

prediction by acoustic diffusors is given by Cox and D’Antonio(2009, ch. 8). A brief

overview of the wave based methods and semi-analytical approaches relevant to

predicting scattering follows. Theoretical details are provided in Chapter 2.

1.2.1 Wave Based Methods

Wave based methods solve the well-known wave equation through numerical means.

Three common methods exist: the finite element method (FEM) (Zienkiewicz et al.,

2005a), the boundary element method (BEM) (Schenck, 1968), and the finite

difference time-domain method (FDTD) (Botteldooren, 1994). The FEM and BEM

recasts the wave equation into an integral form in order to solve a system of

equations based on the discretization of either space or boundaries. Assuming the

source is time–harmonic, solutions are computed at specific frequencies by

transforming the wave equation into the time-invariant Helmholtz equation. The

FDTD solves the elementary differential equations that govern the conservation of

mass and momentum through finite difference schemes. Numerical solutions are

computed within the time-domain.
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The advantages of utilizing wave based methods include the accurate accounting

of wave scattering and reflection. Generally, solutions are shown to coincide with

experimental results and serve as a proper baseline for verification purposes.

Disadvantages include the complex modeling of anechoic boundaries, the high

computational cost of solving large geometric domains, or determining high

frequency solutions. Plus, modeling time-domain impedance boundary conditions is

complicated by the fact that current solutions either rely on a simplistic physical

model, which is only applicable for low frequencies (Richter et al., 2011), or rely

upon fitting a digital filter’s frequency response to the impedance frequency response

(Escolano et al., 2008). Frequency based impedance models are well established;

however, time-domain impedance models are undergoing continual development.

1.2.2 Semi-analytical Methods

Semi-analytical methods combine solutions for scattering by simple geometries and

extends the prediction to an ensemble of geometric features, replicating the base

form. For example, boss models begin with a solution to the scattering of a

semi–cylinder or hemisphere. The solution is extended to a periodic or random

arrangement of semi–cylinders or hemispheres for the overall scattering (Lucas and

Twersky, 1984). Another approach is to utilize the solution for a diffracting edge

(Biot and Tolstoy, 1957). A geometric scattering surface is viewed as an ensemble of

diffracting edge (Novarini and Medwin, 1985) and the overall scattered response is

computed.

Advantages of a semi-analytical approach include fast solutions and a physical

insight into the scattering problem. Since discretization is either avoided, or is of a

low spatial order, it is expected that computations surpass the speed of wave based

methods. Plus, computations conducted in the time domain permits the

identification of individual scattering mechanisms, as opposed to continuous–wave
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computations. Since an elementary geometric form is the basis of computation a

disadvantage is the lack of geometric generality. Furthermore, if mutual reflections

of scattering are significant then an image method must be employed. Despite the

disadvantages of a semi-analytical approach it is shown that the combination of an

advanced image source method with an edge diffraction model, as pursued in this

dissertation, may be well suited to predict scattering in a number of cases, such as

for acoustic diffusors.

1.3 Dissertation Overview

This dissertation proceeds with a chapter on the theory of scattering prediction

methods, a chapter addressing each research objective, and a chapter with

concluding remarks. Chapter 2 addresses the theoretical foundations of numerical

methods relevant to scattering predictions. The foundations of the finite element

method, finite difference time domain method, boundary element method, image

sources, ray tracing, and classical beam tracing are described at length. Chapter 3

details the algorithmic structure of the adaptive tetrahedral tracing method, a

variation on adaptive beam tracing. The process of the algorithm is defined by

description and illustrations. Chapter 4 describes a secondary source model for edge

diffraction, a unification of the edge diffraction model and adaptive tetrahedral

tracing, and numerical verification of the proposed method. Numerical verification

is shown for a rigid wedge and a reflecting panel geometry. Chapter 5 presents

comparisons between the proposed scattering prediction method and experimental

results from acoustic diffusors. The selected acoustic diffusors include designs based

on primitive geometry, and number theory. Furthermore, a comparison of

experimental results is made between two excitation signals: a maximum length

sequence, and a logarithmic swept-sine. The concluding chapter, Ch. 6, offers final
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remarks on the capabilities/limitations of the proposed scattering prediction

method, and thoughts on future work.

1.4 Contributions

The contributions of this dissertation are as follows:

• A detailed algorithmic description of adaptive tetrahedral tracing is provided.

• A semi-analytical approach based on the fusion of adaptive tetrahedral tracing

and a secondary source model for edge diffraction is presented.

• The scattering predictions of the semi-analytical approach are evaluated

against experimental measurements of acoustic diffusors.

• Comparisons are given for goniometer measurements based on either a

maximum length sequence signal or a logarithmic swept-sine signal.
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Chapter 2

Scattering Prediction Methods

The prediction of sound scattering is an essential technique in architectural

acoustics. For acoustic diffusors it is an essential element for the evaluation of

diffusor designs (Cox and Lam, 1994), numerical optimization of diffusors (Cox,

1995), and the computation of scattering coefficients for geometric room modeling

(Cox and D’Antonio, 2009, pp. 143–147, 416). Chapter 1 mentions in brief two

types of prediction strategies that address sound scattering: wave based methods

and semi-analytical methods. This chapter details the theory of wave based

methods and semi-analytical methods relevant to acoustic scattering. Section 2.1

outlines the wave equation as the basis for the numerical methods described in the

following sections. The theory of the finite element method (FEM) is described in

Section 2.2. Next, the basis for the boundary element method (BEM) is given in

Section 2.3. Following, the fundamentals of the finite difference time domain

(FDTD) method are covered in Section 2.4. The boss model is described in Section

2.5. Edge diffraction models are described in Section 2.6, with particular emphasis

on a secondary source model for edge diffraction.

9
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2.1 The Wave Equation and Boundary

Conditions

The linear homogeneous wave equation has its basis upon the linear equations of

state, continuity, and momentum (Kinsler et al., 2000, pp. 113-120). The linear

equation of state relates acoustic pressure to small variations in condensation,

p(~r, t) = Bs(~r, t), (2.1)

where p is the acoustic pressure, s is condensation, B is the adiabatic bulk modulus,

~r = (x, y, z) is the field position vector, and t is time. The thermodynamic speed of

sound is related to the adiabatic bulk modulus by,

c2 = B/ρ0, (2.2)

where c is the speed of sound, and ρ0 is the equilibrium density of the medium. The

linear equation of continuity embodies the principle of conservation of mass,

ρ0
∂s(~r, t)

∂t
+∇ · [ρ0~u(~r, t)] = 0, (2.3)

where ~u is the acoustic particle velocity, and ∇ is the gradient operator. Finally, the

linear equation of momentum casts Newton’s second law in a differential form,

ρ0
∂~u(~r, t)

∂t
+∇p(~r, t) = 0. (2.4)

The essential equations above relating state, conservation of mass, and a balance of

forces directly lead to the linear homogeneous wave equation.

The linear homogeneous wave equation is derived from Eqs. (2.1)–(2.4) resulting
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in a fundamental equation of acoustics. The derivation proceeds by taking the

second time derivative of the equation of state, Eq. (2.1), applying a time derivative

to the equation of continuity, Eq. (2.3), and finally taking the divergence of the

equation of momentum, Eq. (2.4). Substitution and rearrangement of the resulting

equations leads to the linear wave equation,

∇2p(~r, t)− 1

c2

∂2p(~r, t)

∂t2
= 0, (2.5)

where ∇2 is the Laplace operator. Equation (2.5) physically relates the transport of

acoustic waves over space and time in a non-dispersive medium. The velocity of

acoustic wave propagation is the speed of sound c.

A scattering problem is characterized as a boundary-value problem distinguished

by an unbounded domain and the presence of a source. A source that characterizes

mass injection at a rate per unit volume is introduced into the equation of

continuity, Eq. (2.3), (Kinsler et al., 2000, pp. 140–142),

ρ0
∂s(~r, t)

∂t
+∇ · [ρ0~u(~r, t)] = f(~r, t), (2.6)

where f is a source term radiating as a monopole. The inclusion of a source results

in the inhomogeneous linear wave equation,

∇2p(~r, t)− 1

c2

∂2p(~r, t)

∂t2
= −∂f(~r, t)

∂t
. (2.7)

The wave equation as posed in Eqs. (2.5) and (2.7) are hyperbolic partial

differential equations. Separation of the time variable reduces the hyperbolic partial

differential equation into an elliptic partial differential equation. Assume the
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acoustic pressure to be time harmonic,

p(~r, t) = p(~r)ejωt, (2.8)

where j is the imaginary number (
√
−1), and ω is the radial frequency. Assume the

source term f is time-harmonic, as the acoustic pressure, and substitute the

acoustic pressure, Eq. (2.8) into the linear wave equation, Eq. (2.7), resulting in the

inhomogeneous Helmholtz equation,

∇2p(~r) + k2p(~r) = −jωf(~r), (2.9)

where k = ω/c is the wave number. An unbounded domain physically requires

waves to diminish at infinity. The boundary which satisfies this requirement is

Sommerfeld’s radiation condition for three-dimensional space (Sommerfeld, 1949,

p. 189),

lim
r→∞

r

(
∂p(~r)

∂r
+ jkp(~r)

)
= 0, (2.10)

where r is the radial coordinate in spherical coordinates.

A well-posed scattering problem requires specification of the scattering boundary

condition. In mathematical terms various boundary conditions may be specified: a

Dirichlet boundary condition, a Neumann boundary condition, or a Robin boundary

condition. For the purposes of rigid scattering a Neumann boundary condition is,

∇p(~r) · n̂ =
∂p(~r)

∂n
= 0 on Γ, (2.11)

where the vector n̂ is the unit normal vector to the boundary Γ and it is understood

that the partial derivative is with respect to the boundary normal, see Fig. 2.1. The

boundary condition in Eq. (2.11) indirectly states that the particle velocity is zero

in the normal direction relative to the boundary (cf. Eq. (2.4)), signifying a rigid
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Γ

Ω

n̂

Γ+

Ω+

Γε

ε

~r ′

~r

Figure 2.1: An acoustic scattering geometry in three-dimensional space is charac-
terized by an unbounded domain, Ω+, with one or more scattering objects. The
scattering object encloses a domain Ω with a boundary Γ. The outward unit normal
n̂ is defined everywhere on Γ. The vector ~r is the observation position vector, and ~r ′

is a variable position vector. A infinitesimally small sphere, with radius ε, encloses
the point in space at the observation position vector.

surface. A scattering problem is not restricted to simply rigid scattering. In a

similar vein a radiation problem is posed by specifying a Dirichlet boundary

condition,

p(~r) = h(~r) on Γ, (2.12)

where no source term exists other than what is specified on the boundary. Finally,

an impedance boundary condition is given as a Robin boundary condition,

∂p(~r)

∂n
− jkζ ′(~r)p(~r) = 0 on Γ, (2.13)

where ζ ′ is the surface admittance defined with an outward pointing normal

(ζ ′ = −ζ where ζ is defined with an inward pointing normal).

The time-harmonic forms of the FEM and BEM have their basis in the

Helmholtz equation, Eq. (2.9), for scattering predictions.
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2.2 Finite Element Method

The FEM originated from solution techniques bearing on problems of a continuous

nature (Zienkiewicz et al., 2005b). Physical phenomena such as fluid flow or

structural displacements are inherently continuous and have a mathematical

description as a partial differential equation. The FEM approximates the solution of

a partial differential equation by subdividing the continuum into many small

elements where the constitutive equations hold locally. Hence, the partial

differential equation is discretized mathematically in space and/or time. By

transforming the linear wave equation, Eq. (2.7), into the time-invariant Helmholtz

equation, Eq. (2.9), a boundary-value problem forms the basis for discretizing the

acoustic scattering problem in space.

In order to estimate the solution of acoustic scattering a finite domain must be

imposed upon the problem. The restriction of a finite domain is based upon the fact

that space is discretized in the FEM. Therefore, a finite domain is a necessary

requirement for estimating a solution. For a three-dimensional geometry a sphere

serves as a possible artificial boundary. The annular region between the artificial

boundary Γ+ and the scattering boundary Γ is denoted as Ω+; see Fig. 2.1. Within

the annular region, Ω+, the sound field is computed for acoustic scattering. The

essential requirement for the artificial boundary is that it satisfies Sommerfeld’s

radiation condition, Eq. (2.10). In other words the artificial boundary ideally acts as

a non-reflecting boundary. A major challenge is defining the boundary condition of

Γ+ such that incident and scattered waves are not reflected back into the acoustic

domain.

Several approaches exist for specifying the artificial boundary condition. A naive

approach would be to simply set the boundary condition to Sommerfeld’s radiation

condition, neglecting the limit. Experience has shown that this approach results in

poor approximations to the acoustic field (Givoli, 1992, pp. 49–51, 193–198).



www.manaraa.com

15

Fortunately, other approaches exist which include non-reflecting boundary

conditions, sponge layers (also known as perfectly matched layers), infinite elements,

and Dirichlet to Neumann mapping (Givoli, 1992). Each technique has its own

merits and drawbacks; however, a thorough discussion of each is beyond the scope

of this work. Provided an appropriate artificial boundary condition is selected, the

acoustic scattering problem is well defined.

The problem statement for acoustic scattering is defined by Eq. (2.9), applicable

in Ω+, one of the boundary conditions (Eqs. (2.11)–(2.13)) specified on Γ, and the

appropriate artificial boundary condition. The problem statement has an equivalent

integral form. Multiplying Eq. (2.9) by an arbitrary function v(~r), commonly known

as a test function, and integrating over the annular domain yields (Zienkiewicz

et al., 2005b, ch. 3),

0 =

∫
Ω+

[
v(~r)∇2p(~r) + k2v(~r)p(~r) + jωv(~r)f(~r)

]
dΩ+, (2.14)

where dΩ+ is a differential element of the domain Ω+. The differential element is a

volume element for a three-dimensional domain or an area element for a

two-dimensional domain. Utilizing Green’s theorem for Eq. (2.14) transforms the

integral relation into,

0 =

∫
Ω+

[
−∇v(~r) · ∇p(~r) + k2v(~r)p(~r) + jωv(~r)f(~r)

]
dΩ+

+

∫
Γ+

v(~r)
∂p(~r)

∂n
dΓ+ −

∫
Γ

v(~r)
∂p(~r)

∂n
dΓ, (2.15)

where dΓ is a differential element of Γ, similarly for Γ+. The differential element is

an area element for a three-dimensional surface or a line element for a parametric

contour in two-dimensions. Eq. (2.15) is known as the weak form of Eq. (2.9). This

problem statement is equivalent to satisfying Eq. (2.9) and any imposed boundary

conditions on Γ (Givoli, 1992, pp. 245–248). Utilizing an integral formulation is
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advantageous compared to the differential form since solutions admit a discontinuity

of material properties (Zienkiewicz et al., 2005b, p. 60). The differential form

assumes a strict smoothness in its formulation compared to realistic scenarios.

Once the integral form of the scattering problem is established an approximate

solution is computed. First, the subdomain Ω+ is subdivided into a mesh of

geometric elements known as finite elements. The acoustic pressure is approximated

as a discrete set of nodal pressures within each finite element and weighted with a

set of basis functions. The test function is approximated similar to the acoustic

pressure, being weighted with the same set of basis functions known as shape

functions. In order for the solution to converge, the shape functions must satisfy

certain continuity conditions (Zienkiewicz et al., 2005b, pp. 74–75). The local

equations for each finite element are numerically integrated. Next, the local

equations for each finite element are linked together to form a global set of linear

equations with unknown nodal values of acoustic pressure. Finally, the linear

equations are solved for the unknown pressure values. This method describes a

quick sketch of the Galerkin method as it applies to solving the integral equation,

Eq. (2.15), of acoustic scattering (Givoli, 1992, pp. 252, 253).

The FEM is a highly general method with the capability to solve coupled

phenomena, such as elastic scattering. In the context of predicting acoustic

scattering, it agrees well with BEM predictions for specular scattering angles

(Redondo et al., 2007). In contrast, a consistent difference is shown between the

FEM and BEM predictions for scattering angles far from the specular angle. In the

study conducted by Redondo et al. (2007), the near field of an acoustic diffusor is

computed by the FEM, and the far-field polar response is computed by the

Helmholtz-Kirchhoff integral, Eq. (2.23). Compared to other numerical techniques

the FEM does have some challenges.

Some challenges of the FEM are the increasing computational requirements as
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the wavenumber increases, propagation errors, and the use of an absorbing

boundary condition. In order to resolve wave propagation at smaller scales, space

must be discretized to smaller scales as well. As a result the intermediate system of

linear equations become larger. Hence, the demand upon computational resources

becomes larger as shorter wavelengths of propagation are modeled (Zienkiewicz

et al., 2005a, ch. 12). Another challenge inherent in the FEM are propagation

errors. Two types of errors exist for the FEM: incorrect wave shape and incorrect

wavelength (Zienkiewicz et al., 2005a, pp. 319, 351). These errors are only reduced

by discretizing space to smaller scales and/or increasing the polynomial order of the

shape functions. Lastly, care must be taken in the selection of an absorbing

boundary condition in order to reduce spurious reflections from the artificial

boundary. In spite of the challenges for solving scattering problems by the FEM,

the state of the art is increasingly incorporating wave behavior into the solution

algorithm, reaching new levels of computational capability (Thompson, 2006).

2.3 Boundary Element Method

The BEM approaches the scattering problem similarly to the FEM by transforming

the Helmholtz equation, Eq. (2.9), into an integral equation. First, a Green’s

function is defined which satisfies the Helmholtz equation,

∇2G(~r;~r ′) + k2G(~r;~r ′) = δ(~r − ~r ′), (2.16)

where G is the Green’s function, δ is the Dirac-delta function, and ~r ′ is a variable

position vector, see Fig. 2.1. In the exterior domain, Ω+, Eq. (2.16) is homogeneous

since the observation position vector, ~r, is excluded from the domain by the

spherical surface Γε, with radius ε. In the following derivation the gradient operator

is symbolized as ∇′ denoting differentiation with respect to ~r ′. Multiplying the
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homogeneous form of Eq. (2.16) with acoustic pressure, multiplying the

inhomogeneous Helmholtz equation, Eq. (2.9), with the Green’s function, and

subtracting the two equations results in,

p(~r ′)∇′2G(~r;~r ′)−G(~r;~r ′)∇′2p(~r ′) = −jωG(~r;~r ′)f(~r ′). (2.17)

Integrating Eq. (2.17) over the exterior domain Ω+,

∫
Ω+

[
p(~r ′)∇′2G(~r;~r ′)−G(~r;~r ′)∇′2p(~r ′)

]
dΩ+ = −jω

∫
Ω+

G(~r;~r ′)f(~r ′) dΩ+,

(2.18)

recognizing the right hand side of Eq. (2.18) as the incident acoustic pressure, and

transforming the left hand side by Green’s theorem results in,

−
∫
∂Ω+

[
p(~r ′)

∂G(~r;~r ′)

∂n′
−G(~r;~r ′)

∂p(~r ′)

∂n′

]
d(∂Ω+) = pi(~r), (2.19)

where the unit normal vector n̂′ is an alternative normal on Γ. The boundaries of

Ω+ are denoted as ∂Ω+ = Γ+ ∪ Γε ∪ Γ. Let the radius of the boundary Γ+ extend to

infinity, then by the Sommerfeld radiation condition, Eq. (2.10), the integral over

Γ+ vanishes. Thus, two integrals remain over Γ and Γε. The integral over Γε is

evaluated in the limit of ε going to zero, provided the three-dimensional free-field

Green’s function is,

G(~r;~r ′) =
e−jkε

4πε
, (2.20)

where ε = |~r − ~r ′|. The integral for Γε as ε becomes vanishingly small is,

lim
ε→0

∫
Γε

[
p(~r ′)

∂G(~r;~r ′)

∂n′
−G(~r;~r ′)

∂p(~r ′)

∂n′

]
dΓε =

lim
ε→0

[
p(~r)

∂

∂ε

(
eikε

4πε

)
4πε2

]
= −p(~r). (2.21)
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Substituting Eq. (2.21) into Eq. (2.19) and rearranging terms results in the total

acoustic pressure in Ω+,

p(~r) = pi(~r) +

∫
Γ

[
p(~r ′)

∂G(~r;~r ′)

∂n′
−G(~r;~r ′)

∂p(~r ′)

∂n′

]
dΓ, (2.22)

where the second term on the right signifies the scattered acoustic pressure. The

expressions for the total acoustic pressure in either the exterior or scattering surface

domains are (Burton and Miller, 1971),

p(~r) ~r ∈ Ω+

1
2
p(~r) ~r ∈ Γ

 = pi(~r) +

∫
Γ

[
p(~r ′)

∂G(~r;~r ′)

∂n′
−G(~r;~r ′)

∂p(~r ′)

∂n′

]
dΓ. (2.23)

Within the interior domain, Ω, the total acoustic pressure is identically zero for a

nontransparent surface. Eq. (2.23) is the basis for the boundary element method

(BEM).

In the derivation of Eq. (2.23) the Green’s function for a three-dimensional

free-field was given; however, other Green’s functions satisfy the Helmholtz equation

for other dimensions. The Green’s function for a two-dimensional free-field is,

G(~r;~r ′) = −j
4
H

(2)
0 (kR), (2.24)

where R = |~r − ~r ′|, and H
(2)
0 (kR) is the Hankel function of order zero of the second

kind. The Hankel function is defined as,

H
(2)
0 (kR) = J0(kR)− jY0(kR), (2.25)

where J0 and Y0 are Bessel functions of the first and second kind, respectively.

Assuming large separations of source and receiver, the two-dimensional Green’s
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function may be approximated as,

G(~r;~r ′) =
Ae−jkR√

kR
, (2.26)

where A is a constant and the assumption is based on k|~r − ~r ′| � 1.

A particular challenge associated with the integral formulation for acoustic

scattering, Eq. (2.23), is the presence of non-unique solutions for a specific set of

wavenumbers. Whenever the wavenumber corresponds to a resonance of the interior

domain, Ω, non-unique solutions exist for the total acoustic pressure (Burton and

Miller, 1971). The issue of non-uniqueness is exacerbated as the wavenumber

increases since the density of resonant wavenumbers increases for Ω. One approach

to overcome the non-uniqueness issue is the Burton-Miller method (Burton and

Miller, 1971). For rigid scattering the normal derivative of Eq. (2.23) is taken for

observation positions on Γ, a weighting is applied to the resulting equation, and the

weighted result is added to Eq. (2.23). For a particular weighting a unique solution

is obtained for resonant wavenumbers. An alternative method is due to Schenck

(1968). The Kirchhoff-Helmholtz equation for the interior is imposed upon a

discrete set of interior points resulting in an overdetermined system of linear

equations. The system of equations is solved by a least-squares procedure for

acoustic pressure. Alternatively, if the scattering surface is not enclosed and can be

approximated as an ensemble of thin panels, then the Kirchhoff-Helmholtz may be

recast in an alternative manner, which avoids the non-uniqueness issue.

Application of the thin-panel assumption to the Kirchhoff-Helmholtz equation,

Eq. (2.23), casts the problem in terms of pressure differences and pressure sums

across a thin panel. The normal derivative of Eq. (2.23) is used with a variation of

the Kirchhoff-Helmholtz equation to simultaneously solve for pressures at the front
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and back of a surface (Terai, 1980),

1

2
[p(~r1) + p(~r2)] = pi(~r) +

∫
Γ

{
[p(~r ′1)− p(~r ′2)]

∂G(~r;~r ′)

∂n′

−G(~r;~r ′)

[
∂p(~r ′1)

∂n′
− ∂p(~r ′2)

∂n′

]}
dΓ, (2.27)

1

2

[
∂p(~r1)

∂n
− ∂p(~r2)

∂n

]
=
∂pi(~r)

∂n
+

∫
Γ

{
[p(~r ′1)− p(~r ′2)]

∂2G(~r;~r ′)

∂n∂n′

− ∂G(~r;~r ′)

∂n

[
∂p(~r ′1)

∂n′
− ∂p(~r ′2)

∂n′

]}
dΓ, (2.28)

where the front and rear of a surface element are denoted by the subscripts 1 and 2,

respectively, and the expressions are evaluated on Γ. Eqs. (2.27) and (2.28) solve for

the unknown acoustic pressure differences on the surface of a scattering object.

Assuming the surface is rigid results in a simplification of Eqs. (2.27) and (2.28),

p(~r1) + p(~r2) = 2pi(~r), (2.29)

0 =
∂pi(~r)

∂n
+

∫
Γ

[p(~r ′1)− p(~r ′2)]
∂2G(~r;~r ′)

∂n∂n′
dΓ. (2.30)

Boundary elements assume the pressure difference across an element is constant,

resulting in no need for discretizing the front and rear portions of a surface.

Following the solution of surface pressure differences the total acoustic pressure in

Ω+ is calculated as,

p(~r) = pi(~r) +

∫
Γ

[p(~r ′1)− p(~r ′2)]
∂G(~r;~r ′)

∂n′
dΓ. (2.31)

One particular advantage of the BEM is the fact that the dimensionality of the

problem is reduced by one. For example a three-dimensional problem requires the

solution of surface integrals as opposed to volumetric integrals in the FEM. This is



www.manaraa.com

22

advantageous due to the reduced number of elements required to mesh the

scattering domain. Whereas in the FEM matrices are sparse, in the BEM full

matrices arise due to the mutual interaction of boundary elements (Cox and

D’Antonio, 2009, p. 257). For example, in order to solve an acoustic scattering

problem, first the surface pressures must be computed. This first step is the most

demanding computationally. Once the surface pressures are computed then the

total pressure at an exterior field point is computed fairly quickly.

In the context of predicting scattering from acoustic diffusors, the BEM has

found widespread application. The method was used to predict the scattering of a

quadratic residue diffusor and constant depth diffusor (Cox and Lam, 1994),

numerically optimize a stepped diffusor (Cox, 1995), predict the scattering of a wide

variety of geometric and number theoretic diffusors (Hargreaves et al., 2000),

predict the scattering of Lüke and power residue diffusors (Dadiotis et al., 2008),

and predict the transient scattering of a quadratic residue diffusor using a

time-domain BEM (Hargreaves and Cox, 2008). Lastly, the BEM was used to

predict and compute the autocorrelation diffusion coefficient of a wide variety of

diffusors in a text by Cox and D’Antonio (2009). The widespread use of the BEM

for predicting the scattering of acoustic diffusors illustrates the strength of the

technique for predicting acoustic scattering.

Nevertheless, the BEM is challenged when computing broadband acoustic

scattering due to the large computational demands of the method. As a general rule

it is necessary to specify the maximum size of elements as one-eighth, or smaller, of

the smallest wavelength of interest (Cox and D’Antonio, 2009, p. 256). Thus, it

becomes intractable to compute broadband acoustic fields via the traditional BEM

within a reasonably short amount of time. For example, prediction of a quadratic

residue diffusor by a standard BEM requires a fortyfold increase in time to extend

the frequency range from 2900 Hz to 8700 Hz (Cox and Lam, 1994).
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2.4 Finite Difference Time Domain Method

The finite difference time domain (FDTD) method originated within the

electromagnetic community for predicting wave propagation in space and time. The

first implementation of the method for acoustics was utilized to study an irregularly

shaped acoustic cavity and duct bend (Botteldooren, 1994). Over time the method

has matured and is applied to a variety of acoustic problems.

The governing equations of concern are the conservation of mass, Eq. (2.3), and

momentum, Eq. (2.4). The equation of continuity is transformed into a relation

between acoustic pressure and particle velocity by assuming the equilibrium density

is isotropic, and substituting Eq. (2.1) into Eq. (2.3),

∂p(~r, t)

∂t
+B∇ · ~u(~r, t) = 0. (2.32)

With the equations of continuity and momentum in terms of acoustic pressure and

particle velocity, the prediction of transient sound propagation proceeds by

discretizing the relationships spatially and temporally.

Discretization of the governing acoustic equations in space and time, by finite

difference equations, is the first step in the FDTD technique. The following

formulas apply for two-dimensional problems, which can be extended to three

dimensions by including the third vector component of particle velocity. Pressure

and particle velocity components are approximated as functions of discrete space

and time (Redondo et al., 2007),

p
n+1/2
l,m = p(l∆x,m∆y, (n+ 1/2)∆t), (2.33)

uxnl+1/2,m = ~u((l + 1/2)∆x,m∆y, n∆t) · î, (2.34)

uynl,m+1/2 = ~u(l∆x, (m+ 1/2)∆y, n∆t) · ĵ, (2.35)
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where î and ĵ are the Cartesian unit vectors, for the x and y coordinate axis

respectively, ux is the x-component of the particle velocity, uy is the y-component

of particle velocity, ∆x and ∆y are spatial steps in the x and y coordinate directions

respectively, and ∆t is the time step. In the function definitions for discretized

pressure and particle velocities, the superscript, n, indicates the time index, and the

subscript, l,m, indicates the spatial indices. The time and spatial indices are

integers. Note, the pressure time indices are offset from the particle velocity indices

by one half of a time step and the particle velocity spatial indices are offset by one

half of a spatial subdivision. The reason for staggering the grids of each variable is

to minimize the effect of higher order error terms inherent in each finite difference

equation. Staggering the spatial and temporal grids is known as a leapfrog scheme

(Cox and D’Antonio, 2009, p. 278).

The spatial and temporal derivatives of pressure and particle velocity are

computed as central finite difference equations. For example, the derivative of

pressure in the x-coordinate direction is given as,

px(x, y, t) ≈
p(x+ ∆x, y, t+ ∆t/2)− p(x−∆x, y, t+ ∆t/2)

2∆x
=
p
n+1/2
l,m − pn+1/2

l−1,m

2∆x
,

(2.36)

where the px is shorthand for differentiation with respect to x (px = ∂p/∂x), and

the (x, y, t) argument corresponds to a particular node and time step,

(l∆x,m∆y, n∆t), in the Cartesian computation grid for a specific (l,m, n) pairing.

Application of the central finite difference scheme to the acoustic pressure and

particle velocities for spatial and temporal derivatives results in,

py(x, y, t) ≈
p(x, y + ∆y, t+ ∆t/2)− p(x, y −∆y, t+ ∆t/2)

2∆y
=
p
n+1/2
l,m − pn+1/2

l,m−1

2∆y
,

(2.37)

pt(x, y, t) ≈
p(x, y, t+ 3∆t/2)− p(x, y, t−∆t/2)

2∆t
=
p
n+1/2
l,m − pn−1/2

l,m

2∆t
, (2.38)
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uxx(x, y, t) ≈
ux(x+ 3∆x/2, y, t)− ux(x−∆x/2, y, t)

2∆x
=
uxnl+1/2,m − uxnl−1/2,m

2∆x
,

(2.39)

uyy(x, y, t) ≈
uy(x, y + 3∆y/2, t)− uy(x, y −∆y/2, t)

2∆y
=
uynl,m+1/2 − uynl,m−1/2

2∆y
,

(2.40)

uxt(x, y, t) ≈
ux(x, y, t+ ∆t)− ux(x, y, t−∆t)

2∆t
=
uxn+1

l+1/2,m − uxnl+1/2,m

2∆t
, (2.41)

uyt(x, y, t) ≈
uy(x, y, t+ ∆t)− uy(x, y, t−∆t)

2∆t
=
uyn+1

l,m+1/2 − uynl,m+1/2

2∆t
. (2.42)

Substitution of the finite difference equations, Eqs. (2.36)–(2.42) into the continuity

equation, Eq. (2.32), and the equation of momentum, Eq. (2.4), gives the finite

difference time domain equations,

p
n+1/2
l,m = p

n−1/2
l,m −B∆t

(
uxnl+1/2,m − uxnl−1/2,m

∆x
+
uynl,m+1/2 − uynl,m−1/2

∆y

)
, (2.43)

uxn+1
l+1/2,m = uxnl+1/2,m −

∆t

ρ0

(
p
n+1/2
l+1,m − p

n+1/2
l,m

∆x

)
, (2.44)

uyn+1
l,m+1/2 = uynl,m+1/2 −

∆t

ρ0

(
p
n+1/2
l,m+1 − p

n+1/2
l,m

∆y

)
. (2.45)

First, the particle velocities are computed, based on past pressure values. After, the

subsequent pressure values are computed. The computations continue in a leapfrog

manner.

In order to ensure computational stability exists, the Courant-Friedrichs-Lewy

condition (CFL condition) number, s, must be less than or equal to one,

s = c∆t

√(
1

∆x

)2

+

(
1

∆y

)2

≤ 1. (2.46)

To resolve wave propagation up to a specific frequency there must be ten spatial

steps per the corresponding wavelength. Thus, if the maximum frequency of interest
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is given then it is possible to find the required sampling frequency to fulfill the CFL

criteria:

fs ≥ c

√(
1

∆x

)2

+

(
1

∆y

)2

. (2.47)

Since it is generally not possible to simulate far field wave propagation with the

FDTD method directly, the contour equivalence theorem is utilized. The theorem

states that the scattered pressure in the far field may be computed by integrating

the scattered pressure, and particle velocity, in the near field along a contour which

encloses the scattering object. Thus, at a far field position, ~rf = (xf , yf ), the

scattered pressure is computed with the near-field scattered pressure and particle

velocities along a bounding contour, Γ+, which surrounds the domain Ω+ (Hansen

and Yaghjian, 1999, p. 66),

p(~rf , t) = −∇ ·
∫

Γ+

n̂p(~r, t−R/c)
4πR

dΓ+ +
∂

∂t

∫
Γ+

ρ0n̂ · u(~r, t−R/c)
4πR

dΓ+, (2.48)

where R = |~r − ~rf |. Transforming the above relation to the frequency domain gives

a variant of the familiar Helmholtz-Kirchhoff integral (cf. Eq. (2.23)),

p(~rf ) =

∫
Γ+

[
p(~r ′)

∂G(~rf ;~r
′)

∂n′
−G(~rf ;~r

′)
∂p(~r ′)

∂n′

]
dΓ+, (2.49)

where the Green’s function, G(~rf ;~r
′), is defined as either Eq. (2.20) or Eq. (2.24).

In the context of predicting scattering of acoustic diffusors, one study is known

that employs the FDTD method (Redondo et al., 2007). The predictions in the

study agree well with BEM predictions (Cox and D’Antonio, 2011) for specular

scattering angles. In contrast, a consistent difference is shown between the FDTD

and BEM predictions for scattering angles far from the specular angle. The major

appeal of the technique is the ability to compute transient scattering. Once the

transient scattering characteristics are predicted, the spatial scattering
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characteristics are evaluated in the frequency domain. Similar to the FEM the

FDTD is computationally intensive. Both space and time are discretized according

to Eqs. (2.43)–(2.45). Thus, the dimensionality of the problem is usually restricted

to a two-dimensional domain, as in the referenced study. Acoustic diffusors which

exhibit scattering characteristics in more than one plane suggests a need for a

three-dimensional prediction.

2.5 Boss Theory

Rough surface scattering is closely related to acoustic diffusor scattering. The

scattering induced by a rough surface includes coherent scattering by periodic

roughness and incoherent scattering by random roughness. Consideration of either

one or both effects have resulted in various models on the effective surface

admittance for hemispherical bosses (Biot, 1957) and cylindrical bosses (Lucas and

Twersky, 1984). The theory in the cited studies apply for continuous-wave

scattering. In what follows the theory developed by Lucas and heuristically

extended by Boulanger et al. (1998) are considered.

Consider a plane situated in the xy-plane with cylindrical bosses oriented

parallel to the y-axis. The cylindrical bosses have a radius a and a mean

center-to-center spacing b. An incident plane wave has a propagating vector pointing

towards the origin. The reverse of the propagating vector has an azimuth angle θ

and polar angle φ. The effective surface admittance is (Lucas and Twersky, 1984),

ζ(θ, φ) = χ(θ, φ) + jξ(θ, φ), (2.50)

where ζ is the effective surface admittance, χ is the real part of the surface

admittance due to incoherent scattering, and ξ is the imaginary part of the surface

admittance due to coherent scattering. The real and imaginary parts of the effective
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surface admittance are defined as,

χ(θ, φ) =
k3V 2

2n
(1−W 2){[1− sin2(θ) sin2(φ)]

× [1 + (δ2 cos2(θ)/2− sin2(θ)) sin2(φ)]}, (2.51)

ξ(θ, φ) = kV [−1 + (δ cos2(θ) + sin2(θ)) sin2(φ)], (2.52)

where V is the raised cross-sectional area per unit length (in the case of a

semicylinder V = nπa2/2, n = 1/b is the number of bosses per unit length). The

term (1−W 2) is a packing factor, which is identically equal to zero for periodic

bosses, otherwise it is between zero and one for W = nb∗, where b∗ is the minimum

separation between bosses. The δ term indicates the dipole-coupling between bosses

(Boulanger et al., 1998),

δ =
1 +K

1 + I[K(1 +K)/2]
, (2.53)

where K is a hydrodynamic factor based on the boss shape (K = 1 for a

semicylinder), and I = (πa)2/(3b2) for periodic bosses. Additional expressions for

non-periodic boss arrangements are given by Lucas and Twersky (1984), and

hydrodynamic factors by Boulanger et al. (1998).

A heuristic extension of Twersky’s boss model accounts for the diffraction

grating effect of periodic roughness. First, the total pressure field is considered for a

homogeneous impedance plane (Boulanger et al., 1998),

p(~r) = p1(~r) + p2(~r) = A
e−jkR1

R1

+ AQ
e−jkR2

R2

, (2.54)

where A is a constant, R1 is the distance from the source to receiver, and R2 is the

distance from the image source to receiver. The first term on the right of Eq. (2.54),

p1, corresponds to the direct wave and the second term corresponds to the ground

reflection. The Q term in Eq. (2.54) is the spherical wave reflection coefficient
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(Attenborough et al., 2007, p. 417),

Q(R2, φ, ζ) = Rp(φ, ζ) + [1−Rp(φ, ζ)]F, (2.55)

where φ is the polar angle of incidence, and Rp is the plane wave reflection

coefficient,

Rp(φ, ζ) =
cos(φ)− ζ
cos(φ) + ζ

. (2.56)

The F term is defined as,

F (w) = 1− j
√
πwe−w

2

erfc(jw), (2.57)

where erfc() is the complex error function (Weideman, 1994), and w is the numerical

distance,

w =
√
−jkR2/2[cos(φ) + ζ]. (2.58)

The grating effect is hypothesized to be a reflected wave originating from an image

source with an extra path length,

p′(~r) = A
e−jk(R2+∆)

(R2 + ∆)
, (2.59)

where ∆ = qb sin(φ), and q is an integer depending on the order of interference. The

total pressure field taking into account the diffraction grating effect is,

pd(~r) = wrp(~r) + (1− wr)(p1(~r) + p′(~r)), (2.60)

where wr is the ratio of area covered by bosses. Note, Eq. (2.60) corrects a

typographic error in Eq. (16) of (Boulanger et al., 1998).

Specific studies on predicting acoustic diffusor scattering by boss theory are

nonexistent. The major difficulty in applying boss theory to diffusor prediction is
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the limited geometric applicability. Often, acoustic diffusors are designed as notched

surfaces with varying depths or as curved surfaces. It is not clear how boss theory

may address the vast majority of number theoretic diffusors. Furthermore, the

inherent assumptions of the spherical wave reflection coefficient constrains the

source and receiver to positions close to the surface, large separations relative to the

wavelength, and is only valid for high frequencies. However, it is conceivable that

boss theory may be applied to predicting acoustic scattering by geometric diffusors.

Notwithstanding the narrow range of applicability, the theory agrees well with

experimental results (Bashir et al., 2013).

2.6 Edge Diffraction Theory

Edge diffraction is a form of acoustic scattering. Sound incident upon a wedge or

knife edge scatters sound into all directions creating a continuous sound field across

the direct and reflected geometric boundaries; see Fig. 2.2. The exclusion of acoustic

diffraction in many cases leads to incorrect predictions of the sound field. Thus,

acoustic diffraction forms a vital component of many computed sound fields.

The omission of acoustic diffraction by several traditional propagation prediction

methods presents an opportunity to extend the frequency range of geometric

methods such as the image source method, ray tracing, or beam tracing. Acoustic

diffraction is vitally important for scattering geometries, especially acoustic

diffusors. The scattered sound field of a rigid diffusor consists of reflected and

diffracted sound fields. The mutual scattering across the surface and edges of a

diffusor are completely omitted by geometric propagation methods. Thus, the

inclusion of diffraction is necessary to model the sound field correctly.
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−
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(I) hFF + hGA + hD
(II) hFF + hD

(III) hD

Figure 2.2: Geometric boundaries for a diffracting wedge delineate the extent of free-
field radiation and geometric acoustic propagation. The angle θS − π demarcates
the shadow boundary beyond which no free-field radiation is present. The angle
2θW − π − θS demarcates the geometric boundary beyond which no geometric prop-
agation is present. Three regions are defined by the geometric boundaries for the
wedge geometry shown. Region (I) contains the sum of free-field radiation, geomet-
ric propagation, and diffraction. Region (II) only contains free-field radiation, and
diffraction. Lastly, region (III) only contains diffraction. After (Pierce, 1974).

2.6.1 Classical Solutions of Infinite Plane/Wedge

Diffraction

Acoustic diffraction by wedges is a well studied problem, tracing back to work

conducted in the nineteenth century. The solution of plane wave acoustic diffraction

from a rigid screen is due to Sommerfeld (2004). The solution to diffraction by a

wedge was eventually generalized for a wedge of any angle (Carslaw, 1920).

Acoustic diffraction by a point source, incident upon a wedge of any angle, was

solved by MacDonald (1915). The solution of point source diffraction was later

extended to any arbitrary source type (Bromwich, 1915). The handbook solutions

for screen and wedge diffraction are based on the above developments (Bowman

et al., 1987, chs. 6 and 8). All of the solutions mentioned are for time-harmonic

sources. In contrast, the development of transient solutions of acoustic diffraction

followed time-harmonic solutions by several decades.
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Transient solutions of acoustic diffraction originated with the landmark study by

Biot and Tolstoy (1957). A normal coordinates approach was employed for the

solution of transient acoustic diffraction by an infinite rigid wedge. Figure 2.3

illustrates the geometry and cylindrical coordinate system of the problem. The

original solution assumed a doublet source and was modified to account for a point

source (Medwin, 1981). The expressions by Medwin (1981), and Kinney et

al. (Kinney et al., 1983) are combined to express the transient scattering of an

infinite wedge (Svensson et al., 1999),

hd(τ) = − cν
2π

β(τ)

rSrR sinh η(τ)
H(τ − τ0), (2.61)

where

β(τ) = β++(τ) + β+−(τ) + β−+(τ) + β−−(τ), (2.62)

β±±(τ) =
sin[ν(π ± θS ± θR)]

cosh[νη(τ)]− cos[ν(π ± θS ± θR)]
, (2.63)

η(τ) = cosh−1

[
c2τ 2 − (r2

S + r2
R + (zR − zS)2)

2rSrR

]
, (2.64)

where hd is the first-order diffraction impulse response, ν = π/θw is the wedge

index, θw is the exterior wedge angle, H(τ − τ0) is the Heaviside step function, and

τ0 is the onset time of diffraction for the least time path L0. The cylindrical

coordinates of the source and receiver are (rS, θS, zS), and (rR, θR, zR), respectively;

see Figs. 2.2 and 2.3. The least time path L0 is the distance from source, to wedge

apex, to receiver given as L0 = [(rS + rR)2 + (zR − zS)2]1/2. The distance is the

shortest diffraction path for a wedge.

The closed form solution for transient wedge diffraction, by Biot and Tolstoy,

does not immediately suggest how to compute multiple order diffraction nor

diffraction for finite wedges (Svensson et al., 1999). However, a reinterpretation of

acoustic diffraction according to Huygens principle does suggest how to generalize
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θW

θS
θR

rS
rR S

R

Figure 2.3: Acoustic diffraction geometry for an infinite rigid wedge. The z-axis of the
cylindrical coordinate system is aligned with the diffracting wedge, and pointing into
the page. Azimuth angles indicate the angular position of the source (θS), receiver
(θR), and open wedge angle (θW ). The radial distances of the source to edge and
receiver to edge are denoted by rS, and rR, respectively. The z-coordinates (not
shown) of the source and receiver are zS, and zR, respectively.

acoustic diffraction to more complex scenarios. This interpretation was shown to be

fruitful for computing the diffraction of finite wedges (Medwin, 1981), and doubly

diffracting wedges (Medwin et al., 1982). In contrast to interpreting acoustic

diffraction as propagating modes, the application of Huygens principle interprets

acoustic diffraction as the radiation of secondary sources along a wedge. This

reinterpretation laid the ground work for specifying more precisely the directivity

function of theoretical secondary sources.

2.6.2 Secondary Source Model for Finite Edge Diffraction

The basis for the secondary source model for edge diffraction begins by computing

the impulse response according to Kirchhoff’s retarded potential method (Berryhill,

1977). The pressure response for wedge diffraction is considered as a convolution

between a source signal and diffraction impulse response (Svensson et al., 1999,
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Eq. (12)),

pd(t) = q(t) ∗ hd(t)

=

∫ ∞
−∞

q(t− τ)hd(τ) dτ, (2.65)

where pd(t) is the diffracted pressure, q(t) is the source signal, and hd(t) is the

diffraction impulse response. The initial derivation by Berryhill (1977) considers a

collocated source and receiver, and the special case of a knife edge (θW = 2π). A

non-collocated source and receiver position are then considered, which are arranged

either perpendicularly or parallel to the diffracting edge. The diffraction integral is

computed as an area integration in the spatial domain. Later, the analysis is

extended and reinterpreted by Svensson et al. (1999). The starting point of the

analysis is an infinite wedge, with arbitrary wedge angle, arbitrary source position,

and arbitrary receiver position. Eq. (2.65) is cast as a convolution between the

source signal and an unknown directivity function, attenuated by the path lengths

from source to edge and edge to receiver (Svensson et al., 1999, Eq. (9))),

pd(t) =

∫ ∞
−∞

q

[
t− m(z) + l(z)

c

]
D[α(z), γ(z), θS, θR]

m(z)l(z)
dz, (2.66)

where m and l are path lengths from source to edge and edge to receiver,

respectively, and the projected angles for path lengths m and l are α and γ,

respectively; see Figs. 2.3 and 2.4. The key difference in the integral is that a line

integral is being formulated as opposed to an area integral. Conversion of the line

integral to a integration in time results in (Svensson et al., 1999, Eq. (11)),

pd(t) =

∫ ∞
−∞

q(t− τ)
D[α(τ), γ(τ), θS, θR]

m(τ)l(τ)

dz

dτ
dτ, (2.67)
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where τ = (m(z) + l(z))/c. By mathematical analysis it is shown that the unknown

directivity function is related to Eq. (2.62) (Svensson et al., 1999, Eq. (18)),

D[α(τ), γ(τ), θS, θR] = − ν

4π
β[α(τ), γ(τ), θS, θR]. (2.68)

Substitution of Eq. (2.68) into Eq. (2.67) results in the diffracted impulse response

(Svensson et al., 1999, Eq. (19)),

hd(τ) = − ν

4π

β[α(τ), γ(τ), θS, θR]

m(τ)l(τ)

dz

dτ
, (2.69)

where β is defined as Eq. (2.62) and Eq. (2.63), and η is defined as (Svensson et al.,

1999, Eq. (16)),

η(τ) = cosh−1

[
1 + sinα(τ) sin γ(τ)

cosα(τ) cos γ(τ)

]
. (2.70)

Note, Eq. (2.69) is the continuous-time expression for finite wedge diffraction.

Solution of the diffraction impulse response is based on a line integral along the

diffracting edge. Parameters derived for the Biot and Tolstoy solution are

determined to satisfy the unknown directivity function. The second order diffraction

impulse response, for a truncated wedge, is derived following the same procedure of

retarded potentials. It is shown the second order diffracted impulse response is a

scaled first order diffraction impulse from the secondary sources along the first edge

to the receiver, via the second edge. The scaling is based on a sum of directivity

functions with respect to the first and second edge (Svensson et al., 1999, Fig. (4)

and Eq. (27)).

2.6.3 Solution of Diffraction Singularities

The closed form solutions for diffraction impulse responses contain two types of

singularities. The first singularity occurs at the onset time of diffraction, τ0. It is
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Figure 2.4: Unfolded diffraction geometry. Two diffracting paths of propagation exist
for an infinite wedge. Upper and lower paths, denoted by subscript u and l, are of
the same length. The path lengths correspond to confocal ellipses with foci at the
source and receiver. The shortest path length, L0, passes through the wedge apex,
zA. Projected angles of the path lengths, with respect to the edge, are parameters
for the directivity function in Eq. (2.68). After (Svensson et al., 1999).

present for all source and receiver positions. The expression for diffraction in

Eq. (2.69) becomes infinite when the travel time, τ = τ0, corresponds to the least

time path L0. The reason for the singularity is due to the term dz/ dτ . This term

inherently contains sinh(ν)−1 (Svensson et al., 1999, Eq. (14)) in the denominator,

which becomes infinite for the least time path (when τ corresponds to the least time

path then ν is zero, resulting in sinh(ν) = 0). This singularity is suppressed by

transforming the continuous-time expression to a discrete-time expression and

applying a low-pass filter (Clay and Kinney, 1988). One form of the low-pass filtered

discrete-time diffraction impulse response is (Svensson et al., 1999, Eq. (30)),

hd[n] =

∫ (n+1/2)/fs

(n−1/2)/fs

hd(τ) dτ (2.71)

where n is the discrete sample number, τ = n/fs is the travel time corresponding to

discrete sample number n, and hd(τ) is the continuous-time diffraction impulse
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response as in Eq. (2.69). The integration effectively acts as a low-pass filter. To

decrease the attenuation by low-pass filtering, it was suggested to integrate over a

time window of 4/fs (Clay and Kinney, 1988); however, increasing the sampling

frequency achieves a similar reduction in attenuation. The second singularity arises

when the receiver is along a geometric acoustic boundary at the onset time of

diffraction. Two geometric boundaries exist: the shadow boundary and reflection

boundary; see Fig. 2.2. When the receiver is located on the shadow boundary or

reflection boundary, the expression for β becomes infinite. The term cosh[νη(τ)] is

equal to one at the onset time of diffraction. For a receiver on a geometric boundary

the term cos[ν(π ± θS ± θR) is equal to one. Thus, the denominator of β is zero at

the onset time of diffraction for a receiver on a geometric boundary; see Eqs. (2.63)

and (2.64). This singularity exists in order to account for the discontinuity of the

geometric acoustic field. An analytic approximation, which suppresses the

singularity, bounds the diffraction impulse response (Svensson and Calamia, 2006).

The form of the approximation is,

β[α(z), γ(z), θS, θR]

m(z)l(z)
≈ B0

(z2
rel +B1)(z2

rel +B2zrel +B3)
, (2.72)

where zrel = z − zA is the z-coordinate relative to the wedge apex, see Fig. 2.4. The

variables B0 through B4 are defined as,

B0 =
4L2

0ρ
3 sin[ν(π ± θS ± θR)]

ν2(1 + ρ4)[(1 + ρ)2 sin2 ψ − 2ρ]
,

B1 =
4L2

0ρ
2 sin2[ν(π ± θS ± θR)/2]

ν2(1 + ρ)4
,

B2 = − 2L0(1− ρ)ρ cosψ

(1 + ρ)[(1 + ρ)2 sin2 ψ − 2ρ]
,

B3 =
2L2

0ρ
2

(1 + ρ)2[(1 + ρ)2 sin2 ψ − 2ρ]
. (2.73)
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The dimensionless variable ρ = rR/rS is the ratio of radial receiver distance and

source distance, and ψ is the projected angle of the least time path with the wedge

defined implicitly as,

tanψ =
rS + rR
zR − zS

. (2.74)

The approximation in Eq. (2.72) facilitates the numerical computation of wedge

diffraction when either the receiver is on the reflection or shadow boundaries and

the time sample closely corresponds to the onset time of diffraction. Special care is

required for the exact limits of integration over the time sample corresponding to

the onset of diffraction (cf. Eq. (2.71)). The simplest case requires the upper limit of

integration to be the extent of the first sample. Other considerations are provided in

(Svensson and Calamia, 2006).

2.6.4 Discrete-time Diffraction Formulation

Numerical computation of first, second, and higher order diffraction are achieved by

numerically integrating the continuous-time impulse response, as in Eq. (2.71).

Transformation of the variable of integration, in Eq. (2.71), from time to a

differential element along the wedge allows the integration to be conducted as a line

integral. Distinct diffraction contributions are approximated by the midpoint of two

coordinates corresponding to the starting and ending times for one time sample. For

example, first order diffraction is determined by a simple midpoint approximation to

the integral of the continuous-time impulse response as (Svensson et al., 1999,

Eq. (34)),

hd(n) ≈ − ν

4π

β[α(zn), γ(zn), θS, θR]

m(zn)l(zn)
∆zn, (2.75)

where zn is the midpoint coordinate of zn2 and zn1, which corresponds to discrete

times τ = (n± 1/2)/(fs), and ∆zn is the edge element width (zn2− zn1). Setting the

length of each edge element width to a constant, ∆z, results in determining the ith
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diffraction contribution from element i,

∆hd,i = − ν

4π

β[α(zi), γ(zi), θS, θR]

m(zi)l(zi)
∆z, (2.76)

where the ith contribution should be added to the time sample,

n = fs(m(zi) + l(zi))/c, or subdivided between two time samples. Setting the edge

element width to ∆z < c/fs results in the diffraction contribution spreading over no

more than two time samples. Extension to second and third order diffraction is

formulated similarly to Eq. (2.76), except contributions of second order diffraction

must take into account each distinct combination of secondary source along each

edge. For example, the second order diffraction contribution from the ith edge

element at zi, for the first diffracting edge, along the jth edge element at zj, for the

second diffracting edge, is computed as,

∆hd,ij =
ν1ν2

32π2

β[α1(zi), γ1(zi, zj), θS1, θR1]β[α2(zi, zj), γ2(zj), θS2, θR2]

m1(zi)m2(zi, zj)l2(zj)
∆z1∆z2,

(2.77)

where the subscript 1 denotes the first diffracting edge, subscript 2 denotes the

second diffracting edge, and the respective edge element lengths are ∆z1 and ∆z2.

Furthermore, the 32π2 term is valid for two edges connected by a plane and accounts

for the doubling of pressure for a source mounted on an infinite baffle. Otherwise,

the term should be written as 16π2 when no plane connects the two edges.

Combinations of geometric reflection and diffraction are based on the

computation of both image sources and image receivers. Calculating edge diffraction

due to an image source via Eq. (2.76) or Eq. (2.77) takes into account geometric

reflections prior to diffraction. Similarly, calculating edge diffraction for an image

receiver accounts for geometric reflections following diffraction (Torres et al., 2001).

In the context of predicting scattering by acoustic diffusors, no known studies

exist which utilize an edge diffraction model. The closest related studies are on
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surface roughness (Kinney et al., 1983; Novarini and Medwin, 1985). Possible

reasons for the lack of studies include the limited geometric generality, the

increasing complexity of higher-order diffraction, and an incompatibility with most

geometric propagation methods. In spite of the limited geometric generality of edge

diffraction models the wedge shape was shown to approximate a sinusoidal surface

fairly well (Novarini and Medwin, 1985). A second difficulty is the computational

bottleneck for computing higher orders of diffraction. Consider two edges, with the

same length, that are subdivided into N edge elements. For second-order diffraction

N2 diffraction contributions must be computed. A potential solution to this

difficulty is an integral equation formulation for higher-order diffraction (Asheim

and Svensson, 2013). Another challenge for edge diffraction models are the present

incompatibilities with most geometric propagation models. Studies on edge

diffraction using image sources (Torres et al., 2001) or ray tracing (Antani et al.,

2012) demonstrate an inherent incompatibility between the two models. It is

suggested that adaptive beam tracing is a compatible technique, which is considered

in Chapter 4.

2.7 Summary

The theoretical foundations for scattering prediction methods are discussed at length

for wave-based methods, and analytic models. Wave-based methods, especially the

BEM, have found widespread use in the prediction of acoustic diffusor scattering.

The future trend is to compute the transient scattering characteristics with either

the time-domain BEM or FDTD. Alternatively, analytic models offer the potential

for faster computations at the expense of geometric generality. For example the

dimensionality of edge scattering is reduced to a line integral as opposed to a

surface or volume integration. The potential for computing transient scattering by
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edge diffraction and adaptive beam tracing is explored in Chapters 4 and 5.
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Chapter 3

Adaptive Tetrahedral Tracing

Adaptive tetrahedral tracing is an advanced image source method. As a geometric

propagation method it shares many similarities with other techniques such as the

image source method (Allen and Berkley, 1979), ray tracing (Kulowski, 1985), and

classical beam tracing (Lewers, 1993). However, several features distinguish the

method from those mentioned previously. The primary distinction is the conceptual

view of sound propagation: free-field radiation of sound is a set of expanding

tetrahedrons and geometric reflection is a larger set of expanding tetrahedral

frustums. The initial set of tetrahedrons generally increases upon reflection due to

tetrahedral subdivision. For example, as an initial tetrahedron expands in volume,

intersecting with the geometric domain, portions of the tetrahedron split according

to the incident geometry. Being most closely related to adaptive beam tracing

(Campo et al., 2000; Drumm and Lam, 2000; Stephenson, 1996) the adaptive

tetrahedral algorithm presented in this chapter expands upon previous work by

defining the algorithm as clearly as possible and proposing alternative strategies

when appropriate.

This chapter details the adaptive tetrahedral tracing algorithm. Section 3.1

presents related past work on beam tracing for acoustics, including non-adaptive and

42
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adaptive techniques. Theoretical and algorithmic details of the adaptive tetrahedral

tracing method are given in Section 3.2, and a summary is given in Section 3.3.

3.1 Prior Work

Beam tracing first developed as a method for computer graphics applications

(Heckbert and Hanrahan, 1984; Dadoun et al., 1985). The geometric coherence of

beam tracing was found to be a superior method for generating computer images as

opposed to ray tracing. In the context of computer graphics, geometric coherence is

the conceptual treatment of continuous light propagation as opposed to discrete

light propagation, as in ray tracing. For example, a propagating beam may be

thought of as an infinite bundle of rays as opposed to discrete rays. Applications of

beam tracing to acoustic modeling started emerging in the following decades. A

number of different beam tracing models have been developed that are both

non-adaptive and adaptive.

A non-adaptive beam tracing model was combined with a radiant exchange

model to simulate the decay response of a space (Lewers, 1993). The non-adaptive

beam tracing algorithm developed by Lewers was supplemented by a radiant

exchange model in order to predict the late energy decay within a space. Another

implementation examined the effect of multilayer boundaries within an enclosure

(Wareing and Hodgson, 2005). More recently a non-adaptive beam tracing model

was applied to study the effects of modeling enclosure boundaries as either an

impedance boundary or an energy absorption boundary (Jeong, 2012).

The first study on adaptive beam tracing outlined a rough algorithmic

description (Stephenson, 1996). However, no results based on the algorithm were

provided in the study. An adaptive beam tracing model combined with binary space

partitioning was developed for real-time auralization purposes (Funkhouser et al.,
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2004). This implementation is distinguished from non-adaptive beam tracing

models by including a model for diffraction: the uniform theory of diffraction

(UTD) (Kouyoumjian and Pathak, 1974). Another adaptive beam tracing model

approximates the reflection of propagating beams by omitting portions of the

incident beam after beam subdivision, which is supposedly balanced by distributing

the acoustic energy across the reflected beams (Campo et al., 2000). In the study by

Campo et al. (2000) diffraction is treated by Maekawa’s noise barrier model

(Maekawa, 1968) for room acoustic predictions. Lastly, an adaptive beam tracing

model was combined with a radiosity method for the purpose of computing the

energy decay of rooms (Drumm and Lam, 2000). Unlike other adaptive beam

tracing models the study by Drumm and Lam (2000) omits diffraction effects.

There are several inherent drawbacks for classical beam tracing algorithms.

First, the reliance upon a central vector for determining the propagation paths of a

beam does not account for a beam incident upon two or more polygons (Campo

et al., 2000). As a result specular paths of propagation are incorrectly detected or

missed leading to an incorrect computation of the geometric acoustic field; see

Fig. 3.1(a). In a related manner ray tracing results in acoustic aliasing since the

domain is spatially sampled by a finite number of rays (Lehnert, 1993). The

solution for this first issue is to clip or subdivide beams that intersect multiple

polygons (Drumm and Lam, 2000). A second drawback inherent in both classical

and adaptive beam tracing is a second form of acoustic aliasing, which occurs when

the cross-section of a propagating beam becomes larger than a polygon; see

Fig. 3.1(b). A simple approach to resolve the second issue is to refine the initial

beam density. Lastly, accounting for acoustic diffraction in classical beam tracing is

beset by the same difficulties associated with ray tracing. Typically, a ray does not

exactly intersect a diffracting edge, so edge detection becomes a difficulty. Heuristic

extensions of diffraction formulas based on quantum mechanics and the use of edge
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Figure 3.1: Acoustic aliasing for classical and adaptive beam tracing. (a) For classical
beam tracing a reliance upon a central ray (dash-dotted ray) for reflection computa-
tions lead to incorrect receiver detection, as for R1, and missed receiver detection, as
for R2. The gray regions denote the correct reflected regions. After (Campo et al.,
2000). (b) Both classical and adaptive beam tracing are prone to acoustic aliasing for
beams that become larger than a geometric surface. In this case a specular reflection
to receiver R is missed.

flags provide a possible solution, but severe limitations are imposed by such an

approach (Stephenson, 2008, 2010a,b). Specific limitations include restrictions to

two-dimensional geometry, and ambiguous cases of identifying edge diffraction.

3.2 Adaptive Tetrahedral Tracing Algorithm

Conceptually the adaptive tetrahedral tracing algorithm is an exact image source

method. Only valid image sources are created through the propagation of polygonal

beams. Tetrahedral beams are utilized since cone-shaped beams result in

overlapping errors (Funkhouser et al., 2004). The algorithm described in this

chapter builds upon many elements from classical beam tracing and past models of

adaptive beam tracing. In brief, the adaptive tetrahedral tracing algorithm begins

by propagating initial beams throughout the geometric domain. Beams adapt to
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occluding geometry through beam clipping operations. Ray tracing techniques are

utilized for beam clipping (Drumm and Lam, 2000). For sufficiently complex

geometry beam clipping may operate recursively. Geometric details are resolved by

the recursive process resulting in subdivided beam mappings of all ensonified

regions. Clipped beam profiles, which are not triangular, are subdivided into

triangular regions by a constrained Delaunay triangulation (Yvinec, 2013). Finally,

the image source location corresponding to each subdivided triangular beam profile

is calculated and new tetrahedral beams are reflected throughout the domain.

3.2.1 Surface Geometry

The surface geometry is defined within a Cartesian coordinate system. Polygons are

geometric elements that compose the geometric domain. In this study each polygon

is a quadrilateral with four vertices, ~v1 to ~v4, and four edge vectors, ~e1 to ~e4, see

Fig. 3.2. A vertex is defined as a three-dimensional coordinate, eg. ~v1 = (x1, y1, z1).

Each edge vector is defined as (O’Rourke, 1998, p. 1),

~ei = ~vi mod 4+1 − ~vi for i = 1, 2, 3, 4, (3.1)

where mod is the modulus operator. In the composition of a geometric domain

hanging vertices are disallowed, or equivalently adjacent polygons only share

common vertices. A hanging vertex is a vertex of a polygon that lies on the edge of

another polygon. The unit normal of a polygon is defined as,

n̂ =
~e1 × ~e2

|~e1 × ~e2|
, (3.2)

where n̂ is the unit normal, the operator × is the cross product, and | · | is the norm

of the vector. A polygon unit normal is oriented such that the normal points away

from the “front” of a polygon. Each polygon is associated with a plane that is
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Figure 3.2: Geometric definitions for a polygon. The polygon, Π, is associated with
a plane. The position vector ~r ′ is a known point on the plane and all points on the
plane, ~r, satisfy Eq. (3.3). The polygon is defined by four vertices, ~v1 to ~v4, and four
edge vectors, ~e1 to ~e4. The direction of the polygon unit normal, n̂ is governed by the
right-hand rule, applied to the cyclic ordering of vertices.

mathematically defined as (Long, 2006, p. 789),

n̂ · (~r − ~r ′) = 0, (3.3)

where the operator · is the dot product of two vectors, ~r ′ is the position vector of a

known point on the plane, and ~r is a position vector to points in the plane

associated with the polygon Π. Equation (3.3) concisely defines all the points on the

plane associated with the polygon Π. The equation stipulates that the dot product

between the plane unit normal, n̂, and the vector ~r − ~r ′ must be identically zero for

~r corresponding to points in the plane, see Fig. 3.2.

Expansion of Eq. (3.3) results in another form for the plane equation,

nx(x− x′) + ny(y − y′) + nz(z − z′) = 0, (3.4)
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where the unit normal is defined in terms of Cartesian components,

n̂ = nxî+ ny ĵ + nzk̂, and similarly for the position vectors. Algebraic rearrangement

of Eq. (3.4) results in an alternative plane equation,

ax+ by + cz + d = 0, (3.5)

where a, b, and c are the respective vector components of the unit normal vector n̂.

The perpendicular distance from the plane to the origin is given as d = −n̂ · ~r ′.

In order to facilitate the storage of geometric information, matrices are utilized.

A vertex matrix stores each unique vertex in a K by three matrix where K is the

total number of vertices and each column corresponds to a Cartesian coordinate.

Polygons are specified as a combination of four vertex references in a L by four

matrix where L is the total number of polygons and each entry is a vertex reference

to the corresponding row in the vertices matrix. Vertices are ordered according to

the right hand rule, which dictates the direction of the polygon unit normal. The

polygons at the boundaries of the domain have outward pointing normals. Polygon

unit normals are in a L by three matrix with each column corresponding to a

component of the normal. All the edge vectors are stored in a 4L by four matrix.

Each row corresponds to a particular edge vector. The first column references a

specific polygon and the last three columns are the edge vector components. Lastly,

every polygon is defined as either acoustically rigid or anechoic in a column vector

with length L. Acoustically rigid polygons are associated with a numerical value of

zero and anechoic polygons are associated with a numerical value of one.

3.2.2 Omnidirectional Source

An icosahedron is a geometric primitive that has found common use in beam

tracing for modeling an omnidirectional source. The vertices of an icosahedron,
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centered at the origin, are defined as (Drumm and Lam, 2000),

(0,±1,±τ),

(±1,±τ, 0), (3.6)

(±τ, 0,±1),

where τ = (1 +
√

5)/2 is the golden ratio; see Fig. 3.3(a). The vertices of the

icosahedron are normalized to the unit sphere and serve as unit vectors for beam

rays; see Eq. (3.7). Other geometric primitives exist for a source definition, but the

selection of an icosahedron is motivated by the fact that each face contains equal

cross sectional areas. As such, computations based on intensity or the assignment of

source directivity are easily facilitated.

In order to resolve detailed geometries, it is necessary to subdivide the

cross-sectional areas of the source. Beginning with an icosahedron primitive, the

faces of the icosahedron are subdivided in order to increase the density of

propagating beams. Subdivision is achieved by bisecting the edges of each

icosahedron face (Loop, 1987), projecting all of the resultant vertices to the unit

sphere, and finally determining the convex hull of all vertices (Pion and Teillaud,

2013). This method is known as Loop subdivision. See Fig. 3.3(b) for an illustration

of an icosahedron source refined twice by Loop subdivision.

3.2.3 Beam Definition

A beam is comprised of three beam rays, three beam planes, and three beam plane

unit normals. A matrix with Q rows and three columns stores each beam reference.

Each row corresponds to a beam and the entries in each row reference the beam
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(a) (b)

Figure 3.3: Omnidirectional sources for beam tracing. (a) Icosahedron with 20 faces.
(b) An icosahedron refined by two iterations of Loop subdivision resulting in 320
faces.

rays that make up the beam. A beam ray is parametrically defined as,

~r (b)(l) = ~s+ d̂(b)l, (3.7)

where ~r (b) is the parametric beam ray, ~s is the (image) source position, d̂(b) is the

unit vector of the beam ray, l is the length of the ray, and the superscript (b)

denotes a geometric property of a beam. For an initial beam the unit vectors

correspond to the source vertices, as in Section 3.2.2. The beam ray references are

ordered in an anticlockwise manner, viewed from the (image) source position. To

ensure the beam rays are referenced in an anticlockwise manner the scalar triple

product is used to orient the rays. Given the beam ray unit vectors, and the (image)

source position, the beam rays are ordered in a clockwise or anticlockwise manner

according to the sign of the triple scalar product (Drumm and Lam, 2000),

Ts = (d̂
(b)
2 − ~s) ·

[
(d̂

(b)
2 − d̂

(b)
1 )× (d̂

(b)
3 − d̂

(b)
2 )
]
, (3.8)
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where d̂
(b)
1 to d̂

(b)
3 are the beam ray unit vectors for one beam, Ts > 0 indicates a

clockwise orientation (viewed from the source), and Ts < 0 an anticlockwise

orientation. The beam rays are ordered in an anti-clockwise manner so that the

beam plane unit normals point out of the beam (Lewers, 1993). The beam plane

unit normals are computed as,

n̂
(b)
i =

d̂
(b)
i × d̂

(b)
i mod 3+1

|d̂(b)
i × d̂

(b)
i mod 3+1|

for i = 1, 2, 3. (3.9)

The beam plane normals are stored in a P by three matrix where each column is a

Cartesian component of the beam plane normal. Conceptually a beam is a

tetrahedron that expands in volume with a stationary vertex, being the source or

image source position (Lewers, 1993). Three bounding planes, Π
(b)
1 , Π

(b)
2 , and Π

(b)
3

are beam planes which delimit the volume of the beam. The plane equation for each

beam plane is defined by the beam plane normal, from Eq. (3.7), and the beam

origin, cf. Eq. (3.3). Three bounding beam rays, ~r
(b)
1 , ~r

(b)
2 , and ~r

(b)
3 define the extent

of the beam; see Fig. 3.4.

3.2.4 Beam Propagation

A beam is bounded by three beam rays that define the extent of the beam. In

contrast to classical beam tracing, which relies upon a central ray, the adaptive

tetrahedral tracing algorithm utilizes each beam ray to determine the full extent of

a beam. The added complexity is balanced by the ability to identify multiple

polygons intersected by a beam (Lewers, 1993). Alternatively, a central ray can only

identify a single polygon intersection. The fundamental geometric principles that

govern the extent of rays applies equally to beam rays.

The first step to computing the extent of a beam ray is to determine the length

of the ray to the nearest polygon. Substituting Eq. (3.7) into the plane equation,
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Π
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Π
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Figure 3.4: A representative beam originating from an icosahedron source. Three
beam planes, Π

(b)
1 , Π

(b)
2 , and Π

(b)
3 delimit the volume of the beam. Associated with

each beam plane is a beam plane unit normal that points out of the beam (not shown),

defined by Eq. (3.9). Three beam rays, ~r
(b)
1 , ~r

(b)
2 , and ~r

(b)
3 define the extent of the

beam.

Eq. (3.3), and let the known point on the plane be a vertex of the polygon, Π,

n̂ · (~r (b)(l)− ~v) = 0, (3.10)

where ~v is any one of the four vertices of the polygon Π, and n̂ is the polygon

normal. Expanding Eq. (3.10) and rearranging terms results in the length of the

beam ray (Long, 2006),

n̂ · (~s+ d̂(b)l − ~v) = 0, (3.11)

l =
n̂ · (~v − ~s)
n̂ · d̂(b)

. (3.12)

It must be stressed that this beam ray length is the length of the ray to the plane

associated with the polygon Π. It does not necessarily mean the ray intersects Π.

For multiple polygons the ray length computed by Eq. (3.12) is ambiguous since
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not every ray length corresponds to a polygon intersection. Multiple tests are

applied to confirm which polygon is the nearest polygon intersected by a beam ray.

First, the ray length to a plane, associated with a polygon, must be for a potentially

visible polygon. A simple test on potential visibility is based on the dot product of

the beam ray unit vector and a polygon normal,

d̂(b) · n̂ > 0, (3.13)

which indicates the unit normal and the unit vector point into the same half-space.

Once the set of polygons is reduced by Eq. (3.13), all the ray lengths are computed

for the reduced set of polygons. Beam propagation is physically constrained for

positive ray lengths. Thus, negative ray lengths are excluded from consideration.

Finally, a point-in-polygon test is conducted. Several algorithms exist for checking

whether a point is within a polygon, but the most computationally efficient

algorithm relies upon the Jordan curve theorem (Long, 2006, p. 790). The algorithm

is known as the ray-crossing algorithm (O’Rourke, 1998, sec. 7.5). The algorithm is

applied to each polygon associated with a positive ray length in ascending order.

The first polygon which satisfies the point-in-polygon test is the intersected

polygon. The intersected polygon is linked to the beam ray. If a beam ray intersects

two or more polygons at a polygon edge or vertex, then a list is generated that links

the beam ray with references to each intersected polygon. Initial beam rays are

shown for a beam in Fig. 3.5.

3.2.5 Ensonification Mapping

Once the length of each respective beam ray is computed then the ensonified region

is mapped. Ensonified regions are demarcated by illumination rays. Illumination

rays are traced along the intersection between a beam plane, and a polygon or
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Figure 3.5: Initial propagation of beam rays. The icosahedron source is refined once
and the beam rays are indicated by red rays.

multiple polygons. An initial illumination ray begins from the endpoint of one beam

ray and ultimately continues until the next beam ray end point. The illumination

ray traces a path within the beam plane and along polygons. Once an illumination

ray intersects another beam ray endpoint, then another illumination ray is traced

along the following beam plane. The process repeats until an enclosed area of

ensonification is determined.

The ray equation for an illumination ray depends upon a beam plane and the

polygon intersected by a beam ray or illumination ray. The intersection of a beam

plane and the polygon depend upon the unit normals of the beam plane and

polygon. The unit normal for a beam plane is determined by Eq. (3.9) and the unit

normal for a polygon is determined by Eq. (3.2). Computation of the unit vector for

the initial illumination ray is based on the cross product of the beam plane normal

and polygon normal (Drumm and Lam, 2000),

d̂(il) = n̂(b) × n̂, (3.14)
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where d̂(il) is the unit vector for the illumination ray. The superscript (il) indicates

a property of an illumination ray. The unit vector computed by Eq. (3.14) is

collinear with the line of intersection between the beam plane and the plane

associated with the intersected polygon.

It is possible for a beam ray to intersect two or more polygons; see Sec. 3.2.4. It

was suggested by Drumm and Lam (2000) that when an illumination ray intersects

a polygon vertex, the correct unit vector, originating from the vertex, is the one

that makes the sharpest turn at the vertex relative to the prior illumination ray.

This criteria is closely related to determining the initial unit vector originating from

a beam ray end point on a polygon edge or vertex. Computation of the angle

between two vectors is facilitated by the dot product. For example, consider the dot

product of two unit vectors of subsequent illumination rays,

d̂
(il)
i · d̂

(il)
i−1 = |d̂(il)

i ||d̂
(il)
i−1| cos(θ), (3.15)

where the subscripts i and i− 1 indicates two connected illumination rays in the

same beam, and θ is the angle formed between the two unit vectors in

three-dimensional space. This criteria may be sufficient to determine a subsequent

unit vector; however it is insufficient to determine the initial unit vector for a beam

ray intersecting a polygon vertex or edge. The criteria sufficient to handle both

cases is based upon a physical argument. An illumination ray that originates from a

polygon edge or vertex must continue within another polygon. Concisely, this can

be stated as the principle of continuation. Infinitesimal rays are generated from the

point of intersection with unit vectors computed according to Eq. (3.14). A

point-in-polygon query is conducted for each infinitesimal ray end point and the

associated polygon. The ray that continues within another polygon contains the

correct unit vector.
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Once the correct unit vector for an initial illumination ray is determined then an

illumination ray, or multiple illumination rays, are traced to the following beam ray

end point. The ray length to another beam plane or polygon is determined by

Eq. (3.12). The correct length of an illumination ray is based upon the minimum

distance to another polygon or beam plane. If the ray length to a beam plane is

equal to or less than the length to the nearest polygon, then the length to the beam

plane is selected and a beam plane intersection is noted. Otherwise, if the ray

length to the nearest polygon is less than the length to the nearest beam plane, then

the length to the polygon is selected and a polygon intersection is noted. For a

beam plane intersection, or a polygon intersection, several cases require special

attention. The nature of the intersection is evaluated for the purpose of continuing

or terminating the ensonification mapping along a beam plane.

If a beam plane is intersected one of three cases are applicable. The first case

applies when an illumination ray intersects a beam plane, and the end point of the

ray coincides with the following beam ray end point. If this case applies, then the

ensonification mapping within the current beam plane is terminated, and

ensonification mapping continues along the next beam plane starting at the last

intersection point (following beam ray end point). A second case occurs when a

beam plane is intersected and the illumination ray end point does not coincide with

the following beam ray end point. This case applies when an illumination ray

traverses into a region of space invisible to the (image) source. In this particular

case a reverse ensonification mapping is conducted. The current beam plane normal

is reversed, and an illumination ray is generated from the following beam ray end

point. This procedure effectively traces illumination rays in a reversed sense along

the current beam plane. While a reverse trace is being conducted, each new

illumination ray is checked against an overlapping condition with existing

illumination rays. If an overlap occurs, then the intersection of the two illumination
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rays is computed, the overlapped ray is eliminated, and the illumination ray tracing

continues along the following beam plane. The third case occurs for reflected beams.

A scenario may arise such that an illumination ray intersects a polygon and a beam

plane. Furthermore, the intersection point is on the following beam ray. In this case

the illumination ray tracing is terminated in the current beam plane and continues

along the next beam plane, starting from the following beam ray end point.

If a polygon is intersected, then the next unit vector is determined according to

one of two cases. Before defining the treatment of the two cases, it is necessary to

define the terms locally concave and locally convex points. For example, the wedge

geometry in Fig. 2.3 shows an open wedge angle for a convex wedge since the open

wedge angle is greater than 180◦. A point on the edge of the wedge is locally

convex. In contrast, a concave wedge is a wedge with an open wedge angle less than

180◦. Thus, a point on the edge of the wedge is locally concave. If an illumination

ray intersects a polygon, then the intersection point is locally convex or locally

concave depending upon the orientation of the intersected polygon at the point.

However, an intersection point that coincides with three or more polygons may lead

to some ambiguity in classifying the local geometry. Assuming that no ambiguity of

the intersection point exists, the first case is an illumination ray intersecting a

polygon, or multiple polygons, at a locally concave wedge. The following

illumination ray is computed according to Eq. (3.14) and the principle of

continuation. The second case is the intersection of a locally convex wedge. The

visibility of the intersected polygon(s) is/are checked by Eq. (3.13). If the polygons

are visible, then the principle of continuation is employed. Otherwise, discontinuous

illumination ray tracing is employed. Discontinuous illumination ray tracing is the

process of displacing the start point of the following illumination ray. The displaced

start point is computed similarly to the end point of a beam ray, as in Sec. 3.2.4.

Conceptually, a ray originates from the (image) source point, extends beyond the
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Figure 3.6: All illumination rays traced for a single beam. Illumination rays are indi-
cated by blue rays. Rays are traced along beam planes from one beam ray endpoint
to the next. Beam rays are indicated by red line segments. This illustration depicts
discontinuous illumination ray tracing.

convex point of intersection, and the nearest polygon intersection is determined.

Illumination ray tracing then proceeds from the displaced starting point. Fig. 3.6

illustrates discontinuous illumination ray tracing.

The process of ensonification mapping is inherently neutral with regards to

visibility. As a result occluding surfaces will lead to the generation of partially

visible or invisible illumination rays relative to the (image) source. Illumination rays

originating from a beam ray end point are at least partially visible. Additionally,

illumination rays that intersect a locally convex or locally concave point must be

checked for visibility. Invisible illumination rays are eliminated and partially visible

illumination rays are flagged for further processing. Partially visible rays are

corrected through a process of obstruction mapping. Figure 3.7 illustrates the

elimination of invisible illumination rays.
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Figure 3.7: Elimination of illumination rays not visible to the source. Illumination
rays are indicated by blue line segments and beam rays are indicated by red line
segments. Two invisible illumination rays are eliminated within the beam, compare
to Fig. 3.6.

3.2.6 Occlusion Mapping

Acoustic shadowing results from occluding geometry. Mapping the ensonification

region in the presence of occluding geometry requires special attention. Drumm and

Lam (2000) offer vague suggestions for occlusion mapping. In contrast, Campo et

al. (2000) describe a more complete description for occlusion mapping, but as the

study admits several scenarios are not mapped exactly. Thus, the algorithm

sketched below offers a more comprehensive treatment of occlusion mapping.

Mapping the shadowing geometry profiles the occlusion and projects the profile

to the furthest reaches of the incident beam. As part of the ensonification mapping

procedure, an indication of occluding geometry is noted when an illumination ray

intersects a polygon at a locally convex point. A locally convex point indicates the

possibility that some geometric feature is occluding a portion of the beam.

Confirmation of an occluding feature is dependent upon the convex point satisfying
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a grazing incidence condition. The condition of grazing incidence is satisfied if one

or more polygons at the convex vertex or edge is not visible to the (image) source.

Once grazing incidence is confirmed at a locally convex point then an edge finding

algorithm proceeds to find the shadowing edges contained within the beam. Every

connected edge is determined by a breadth-first search (Cormen et al., 2009), and

pushed onto a first-in first-out stack. Simultaneously the profile of each edge is

projected to the furthest extent of the incident beam through a procedure similar to

illumination ray tracing; see Section 3.2.5.

While the stack containing the shadowing edges is not empty. the extent of a

shadowing edge is determined. The result is a shadow edge ray. It is determined

whether a shadow edge ray intersects a polygon, multiple polygons, or a beam

plane. If a shadow edge ray intersects a beam plane, and is completely visible, then

shadow beam rays are generated from the (image) source through the end points of

the shadow edge ray. The intersection points of the shadow beam rays serve as the

starting and ending points for shadow illumination ray tracing. The shadow

illumination rays are traced from one shadow beam ray end point to the other

through the same process as illumination ray tracing, refer to Sec. 3.2.5. If another

locally convex point is intersected while tracing a shadow illumination ray, then the

occlusion mapping procedure is recursively conducted. Once any recursive

procedures have completed then the shadow edge is pushed off the stack. An

alternative scenario is when a shadow edge ray intersects a polygon, or multiple

polygons. If the intersection point is locally convex, then the same procedure for

shadow illumination ray tracing is conducted as above. Afterwards the shadowing

edge is pushed off the stack. If the intersection point satisfies the condition of

grazing incidence, then adjacent shadowing edges are determined. Otherwise, if the

intersection point is locally concave, then the procedure is treated as a beam plane

intersection. The process of occlusion mapping continues until the shadow edge
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Figure 3.8: Shadow illumination rays are traced for an occluding edge. A shadow
edge ray, shown as a green ray, is computed, which intersects a beam plane. Two
shadow beam rays, shown as violet rays, project the end points of the shadow edge
ray to the furthest extent within the beam. The shadow illumination rays, shown as
teal rays, are traced from one shadow beam ray intersection point to the other. The
illumination rays are shown as blue line segments.

stack is empty. An example of occlusion mapping is shown in Fig. 3.8.

3.2.7 Ensonification Mapping Corrections

Shadow illumination rays facilitate mapping corrections of illumination rays.

Shadow illumination rays demarcate the termination of partially visible illumination

rays. A procedure to correct the length of illumination rays must take two cases

into account. Either the length of a ray must be modified, or the origin of the ray

must be moved and the length modified. In both cases the necessary computations

involve computing ray intersections.

The mechanics of determining ray intersections rely upon comparing unit

directional vectors. All origin and end points of shadow illumination rays are

computed for a particular beam. For each partially visible illumination ray the
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Figure 3.9: Illumination rays, shown as blue line segments, are trimmed according
to the location of shadow illumination rays, shown as teal line segments. In this
particular case one illumination ray is trimmed, compare to Fig. 3.7.

visible point of the ray is determined. Unit directional vectors from the visible point

to each origin/end point of all other shadow rays are compared to the unit

directional vector of the illumination ray. If a matching unit directional vector is

found then the length of the illumination ray is matched to the length of the vector

from the visible point to the origin/end point of the shadow illumination ray.

Alternatively, if a match for a reversed unit directional vector is found then the

origin of the illumination ray is redefined to be the origin/end point of the shadow

ray, and the length of the illumination is adjusted accordingly. Figure 3.9 illustrates

one illumination ray trimmed. Compare to Fig. 3.8.

Edge rays are computed from locally concave intersection points by illumination

rays or shadow illumination rays. An edge finding algorithm, described in Sec. 3.2.6,

is utilized to determine all the edge rays originating from a concave junction that

are visible within the beam. As Fig. 3.10 illustrates an edge ray goes beyond the

region of visibility. Generally, edge rays are traced until another polygon or beam
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Figure 3.10: Edge rays are traced from concave junctions. One edge ray is shown as
a magenta line segment.

plane is intersected. In the case of Fig. 3.10 the vertical edge ray traces from the

concave junction to a beam plane. A ray trimming procedure is conducted on all

edge rays, similar to illumination rays.

The total ensonification mapping concludes by gathering all illumination rays,

shadow illumination rays, shadow edge rays, and edge rays together. Once all

trimming corrections are conducted the total mapping for the ensonified region is

complete. The conglomeration of all corrected rays are hereafter referred to as

ensonification rays. Fig. 3.11 shows all regions of ensonification for a single beam. It

is clear that relying upon a central ray for beam propagation is far from accurate

considering the effect of shadowing.

3.2.8 Subdivision of Ensonification Mapping

Once an ensonification mapping is completed it may become necessary to subdivide

the ensonification regions into coplanar, triangular, regions. Maintaining tetrahedral

beam propagation requires the subdivision of non-triangular ensonification regions
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Figure 3.11: Ensonification rays define the extent of direct or reflected acoustic prop-
agation from the source. The ensonification rays shown as blue line segments

into triangular regions. For ensonification regions that map across several polygons

the regions must be subdivided into unique coplanar groupings of ensonification

rays. Furthermore, each grouping must form a simple closed polygon. For example,

Fig. 3.11 illustrates three unique coplanar groupings of ensonification rays. Once

each unique coplanar region is identified then the non-triangular regions are

subdivided according to a constrained Delaunay triangulation (Yvinec, 2013).

The first challenge for the subdivision of ensonified regions is to determine which

ensonification rays are coplanar and form a simple closed polygon. Assuming all the

ensonification rays in a beam are unique the first step is to determine which

ensonification rays are coplanar. A naive approach is enumerate all triplet

combinations of ensonification rays. For a small number of rays this approach is

satisfactory; however, as the number of rays increases the number of combinations

increases very rapidly since the total number of enumerations is equivalent to the

binomial coefficient, (
n

k

)
=

n!

(n− k)!k!
, (3.16)



www.manaraa.com

65

where n is the total number of ensonification rays in a beam, and k is three in this

case. Triplet combinations are generated since a coplanar test requires three unit

vectors. In addition to a prohibiting number of combinations a large number of

combinations are generated for physically unconnected rays. Rather than enumerate

every combination a more efficient approach is to develop a search tree, which is

generated by a breadth-first-search (Cormen et al., 2009) of the ensonification rays.

The search tree contains all the ensonification rays as nodes of the tree and physical

connections as links between the nodes. The search tree facilitates the generation of

a reduced set of triplet combinations. For every ensonification ray triplet, a

coplanarity test is based upon the determinant of a matrix of unit directional

vectors (Ito, 1993, p. 1679),

Tc =

∣∣∣∣∣∣∣∣∣∣
d

(il)
1,x d

(il)
1,y d

(il)
1,z

d
(il)
2,x d

(il)
2,y d

(il)
2,z

d
(il)
3,x d

(il)
3,y d

(il)
3,z

∣∣∣∣∣∣∣∣∣∣
, (3.17)

where each row of the matrix above corresponds to a unit directional vector of each

ensonification ray [see Eq. (3.14)], and Tc = 0 for three coplanar rays. Note, the

computed determinant above is equivalent to the scalar triple product for three

vectors,

T = ~a · (~b× ~c), (3.18)

where T is the signed volume of a parallelepiped formed by vectors ~a, ~b, and ~c. This

is an alternative interpretation of the scalar triplet product as posed in Eq. (3.8).

The set of all three ray combinations which satisfy Tc = 0, from Eq. 3.17, are

inspected further. For each group the plane normal, computed by the cross product

between two unit directional vectors [cf. Eq. (3.2)], is determined in order to find

the distance of the plane from the origin, see Eq. (3.5). Each coplanar ray grouping
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with the same plane normal, and distance from the origin are consolidated further.

Set operations are performed on the ray groupings to consolidate the rays that

satisfy coplanarity, and connectedness.

For each unique ensonification region, a simple closed polygon is formed and

non-triangular regions are subdivided according to a constrained Delaunay

triangulation. The formation of a simple closed polygon requires the ensonification

rays to be arranged in a cyclic manner (O’Rourke, 1998, pp. 1, 2). Generally

ensonification rays are not arranged in a cyclic manner since they are composed of

illumination rays, shadow illumination rays, and edge rays. Thus, it becomes

necessary to reverse the orientation of rays accordingly. Once all the ensonification

rays form a simple closed polygon, the rays are projected to a Cartesian plane. The

projection plane is dependent upon the largest component of the plane normal.

Whichever component of the normal is largest the plane of projection is the plane

formed by the two other Cartesian components. For example, if the component of

the normal is largest along the y-axis then the plane of projection is the x-z plane.

Constraints for the Delaunay triangulation are specified by an ordered list of

ensonification ray origins, which confines the ensonification region. Finally, a

constrained Delaunay triangulation is conducted on the ordered vertices, resulting

in triangular regions of ensonification; see Fig. 3.12.

3.2.9 Child Beam Generation

If the ensonification mapping includes multiple regions requiring subdivision, then

multiple child beams are generated for reflection. Otherwise, for a single triangular

region the tetrahedral profile of the beam is preserved for reflection. Each child

beam is generated by creating beam rays that originate from the (image) source to

the vertices of a triangular region. The beam rays are oriented in an anticlockwise

manner with the aid of the triple scalar product, cf. Eq. (3.8). Beam plane normals
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Figure 3.12: Subdivision of ensonification mapping. A coplanar, connected, region is
highlighted by blue line segments. Constrained Delaunay triangulation of the region
results in triangular regions, denoted by the blue dashed line.

are computed by Eq. (3.9). The intersection points of each beam ray are noted for

each child beam, and any beam ray intersecting multiple polygons is noted as in

Sec. 3.2.4. A child beam generated by the process of adaptive tetrahedral tracing is

shown in Fig. 3.13. In the presence of occluding geometry a tetrahedral beam is

clipped according to the extent of the occlusion. The clipping process results in the

generation of several new beams. Greater computational resources are required for

the adaptive beam tracing process compared to the ray tracing method, but in

comparison to the image source method, less resources are required for high

reflection orders (Drumm and Lam, 2000). However, in contrast to the ray tracing

method or the image source method, the adaptive beam tracing method accurately

determines the visibility of diffracting wedges from the (image) source.
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Figure 3.13: A child beam is generated for a portion of an ensonified region. The
ensonified region is subdivided into two triangular regions by a constrained Delaunay
triangulation. One child beam is shown in orange.

3.2.10 Beam Reflection

Each tetrahedral beam generated by the process in Sections 3.2.3–3.2.9 is either

reflected or anechoically absorbed, assuming that all surfaces are either acoustically

rigid or anechoic. The reflection of tetrahedral beams is governed by the geometric

law of reflection. The geometric law of reflection states that the angle of incidence is

equal to the angle of reflection. Equivalently, by the method of images the reflecting

ray is determined by creating an image source, which is a mirrored source position

about the reflecting point. The image source for a propagating beam is computed as

(Drumm, 2005),

~s (i) = ~s+ 2[(d̂(b)l) · n̂]n̂, (3.19)

where d̂(b)l is the vector associated with a beam ray of a tetrahedral beam, ~s (i) is

the the image source position, and n̂ is the unit normal of the polygon intersected

by the beam ray. Similarly the reflected unit vectors of each beam ray are computed
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as (Lewers, 1993),

d̂(b)
r = d̂(b) − 2(d̂(b) · n̂)n̂, (3.20)

where d̂
(b)
r is the reflected beam ray unit vector.

Extra caution must be exercised when propagating a reflected tetrahedral beam.

In addition to the normal procedure of beam ray propagation, outlined in Sec. 3.2.4,

reflected beam rays must take extra considerations into account in order to be

physically correct. First, at a minimum the reflected beam ray length must be equal

to or greater than the distance from the image source position to the ensonification

region. Second, the polygon intersected by the beam ray must be visible from the

incident ensonification region. Accounting for these two physical constraints, in

addition to the process described in Sec. 3.2.4, results in the correct computation of

reflected beam rays.

3.2.11 Receiver Detection

It is suggested by Wareing and Hodgson (2005) that a receiver detection is

dependent upon the relative positions of the source, receiver, and beam planes. In

other words a receiver detects an incident beam by testing its presence within the

three bounding beam planes of a beam. A receiver detection occurs when the

following conditional relationship is satisfied (Wareing, 2000),

0 ≤


n̂

(b)
1 · (~r − ~s),

n̂
(b)
2 · (~r − ~s),

n̂
(b)
3 · (~r − ~s),

(3.21)

where n̂(b) the beam plane normal computed by Eq. (3.9), ~r is the receiver position,

and ~s is either the source or image source position. A similar suggestion is made by

Drumm and Lam (2000). The scenario where this relationship breaks down is for
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non-concave geometric domains. Coupled spaces is one particular example. A

receiver may be within the volume of the bounding beam planes, but not within the

extent of the beam. A stricter test is based on a different geometric test.

Since every propagating beam is a tetrahedral beam, a geometric query is

sufficient to determine if a receiver detects an incident beam. Hence, a

point-in-tetrahedron query determines whether a propagating beam intersects a

point receiver. The test is based on the Cartesian coordinates of the tetrahedron and

receiver. Five determinants are computed for the query (Yamaguchi, 2002, p. 221),

d0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣
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, (3.22)
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d2 =
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d3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

t1,x t1,y t1,z 1

t2,x t2,y t2,z 1

rx ry rz 1

sx sy sz 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.25)
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d4 =
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, (3.26)

where ti,j is the j-component of the ith tetrahedral vertex (i = 1, 2, 3, and j = x, y,

and z), and ~s is source or image source position. The tetrahedral vertices referenced

in Eqs. (3.22)–(3.26) are the vertices at the base of the tetrahedron. The source

position is the apex of the tetrahedron. The receiver position is denoted by ~r. The

receiver is within the tetrahedron if all the determinants in Eqs. (3.22)–(3.26) are all

either greater than or less than zero. If any of the determinants are equal to zero

then the receiver is on a boundary of the tetrahedron.

3.3 Summary

The tetrahedral tracing algorithm is an adaptive and recursive process of

determining the extent of propagating beams in a geometric domain. An

omnidirectional source is defined as either an icosahedron, or an icosahedron refined

by Loop subdivision. Beam rays are propagated from the source to the furthest

extent in the geometric domain. Illumination ray tracing maps the ensonification

region delimited by the beam rays. If occluding geometry is present within a beam

then shadow ray tracing determines the profile of occluding geometry and the

projection of the occluding profile to the furthest extent of the beam. If necessary

ensonification mapping corrections are conducted to completely map the ensonified

region or regions. If multiple ensonification regions are generated by a beam, then

each coplanar, connected region is identified and subdivided by constrained

Delaunay triangulation. Child beams are generated after the ensonification regions

are subdivided into triangular regions. The propagation of reflected beams are
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governed by the geometric law of reflection. Finally, receiver detection is based on a

point-in-tetrahedron query, which eliminates false-positive detections past strategies

employed.

One particular advantage the adaptive tetrahedral tracing algorithm has

compared to other geometric methods is the identification of diffracting edges. This

capability is utilized to link together the algorithm with a secondary source model

for edge diffraction; see Secs. 2.6.2–2.6.4. Details on joining the two models of

acoustic propagation are given in Ch. 4.
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Chapter 4

Fusion of Adaptive Tetrahedral

Tracing and Edge Diffraction

Scattering by rigid acoustic diffusors is a combination of geometric propagation and

diffraction. The multitude of interactions include reflections, diffractions, and

permutations of the two mechanisms. Wave-based prediction methods, outlined in

Chapter 2, solve for the scattered field as the sum total of all permutations of

reflections and diffraction. The identification of individual propagation mechanisms

is not possible due to the mathematical formulation. In contrast, an edge diffraction

model accounts for specific, identifiable diffraction events; see Sec. 2.6. Similarly, a

geometric propagation method accounts for specific, identifiable reflection

contributions. The two models taken alone are insufficient to characterize diffusor

scattering; however, linking the two offers an alternative approach for time-domain

prediction.

In contrast to image source methods or ray tracing methods, adaptive

tetrahedral tracing is highly compatible with edge scattering models. The adaptive

tetrahedral tracing algorithm, described in Chapter 3, precisely maps the incident

and reflected sound fields. In the presence of geometric discontinuities the mapping

73
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is generated by splitting incident and reflected beams. The same geometric

discontinuities that lead to beam splitting may also lead to acoustic diffraction. By

design the acoustic mapping generated by adaptive tetrahedral tracing inherently

contains information required for edge diffraction computations. Therefore, by

extracting the information required for edge diffraction computations from the

acoustic mapping, a bridge is formed between adaptive tetrahedral tracing and edge

scattering models.

The chapter proceeds by exploring the link between adaptive tetrahedral tracing

and an edge diffraction model in Sec. 4.1. After, in Sec. 4.2 graph theory is applied

to the generation of geometric reflection and diffraction permutations. Sec. 4.3

details the generation of digital impulse responses from scattering predictions. The

joint model for acoustic scattering is numerically verified by three case studies in

Sec. 4.4. Finally, a summary is given in Sec. 4.5.

4.1 Linking Adaptive Tetrahedral Tracing and

Edge Diffraction

The adaptive tetrahedral tracing method generates an acoustic mapping of incident

and reflected sound fields. The incident and reflected sound fields are determined by

propagating tetrahedral beams from the source or image sources. In the presence of

surface discontinuities a propagating tetrahedral beam is split, conforming to the

incident geometry. The conforming nature of adaptive tetrahedral tracing is the key

element for identifying diffracting edges.

If a tetrahedral beam is split, then portions of split profiles may be collinear

with surface discontinuities. For each child beam, new beam rays are computed

from the (image) source to the triangular profile, as in Sec. 3.2.4. At a surface

discontinuity a beam ray intersects two or more polygons. If two or more beam rays
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of a child beam intersect multiple polygons, then a diffracting edge may be collinear

with a portion of the beam profile. The condition of collinearity is satisfied if two

polygon unit normals, associated with one beam ray, match two other polygon unit

normals, associated with another beam ray.

Once a diffracting edge is identified the wedge geometry is deduced from the

available information. First, the z-axis of a cylindrical coordinate system is aligned

with the edge. The direction of the axis is opposite to the edge vector of the

reference polygon. More precisely, the reference polygon contains a unit normal in

the opposite direction of the azimuth unit vector. In other words, the fingers of a

right hand come out of the reference polygon when the thumb is aligned with the

z-axis of the wedge. Once the reference polygon is established then the open wedge

angle is computed with the aid of the triple scalar product,

Ts = −k̂ · (n̂1 × n̂2), (4.1)

where k̂ is the unit vector aligned with the z-axis, n̂1 is the reference polygon unit

normal, n̂2 is the second polygon forming the wedge, and Ts is the triple scalar

product. The computation of the open wedge angle depends upon the sign of the

triple scalar product,

θW =


π − arccos(n̂1 · n̂2) if Ts < 0,

arccos(n̂1 · n̂2) + π if Ts > 0,

(4.2)

where θW is the open wedge angle computed in radians. If the open wedge angle is

any angle equal to π/m radians, where m is an integer, then no acoustic diffraction

is emitted from the wedge (Biot and Tolstoy, 1957). After the open wedge angle is

computed, the length of the diffracting wedge is determined by the distance between

the two beam ray end points. Finally, the cylindrical coordinates of the (image)
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source and (image) receiver are computed relative to the wedge by two coordinate

transformations. The global Cartesian coordinate system is mapped to a local

Cartesian coordinate system along the wedge. The local coordinate system is

oriented such that the x-axis points into the reference polygon, and the y-axis

points away from the reference polygon unit normal. The local Cartesian

coordinates are then transformed to cylindrical coordinates.

The extraction of wedge parameters from an acoustic mapping of sound

propagation links together adaptive tetrahedral tracing and edge diffraction models.

Specifically, a secondary source model for edge diffraction, described in Sec. 2.6, is

well-suited for computing first-order, second-order, and higher-order diffraction in

the time-domain. The wedge parameters generated by the extraction process are

sufficient for the computation of first-order diffraction impulse responses. However,

additional considerations are required for second, and higher-order diffraction.

4.2 Graph Theory Applied to Multiple-Order

Diffraction

Determination of sound propagation paths from source, to multiple edges, and then

to a receiver is essentially a problem associated with graph theory (Bang-Jensen and

Gutin, 2001). The problem is similar to finding sound transmission paths in

statistical energy analysis (Guasch and Cortes, 2009). Given the source, edges, and

receiver are considered as nodes in a directed graph it becomes essential to

determine which paths are valid; see Fig. 4.1(a). A defining feature of a directed

graph for sound propagation is the one-way sound transmission from source to all

visible edges. Furthermore, all edges visible to the receiver result in sound

diffraction directed to the receiver. Sound transmission is bidirectional between

edges, if a portion of one edge is visible to another. Construction of the directed
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Figure 4.1: Directed graph representation of source, edges, and receiver. (a) Physical
geometry of source, scattering object, and receiver. Each diffracting edge of the object
is labeled numerically. (b) Directed graph indicating paths of sound propagation from
source to receiver, and source to edges to receiver.

graph, for sound propagation, is based on visibility. Visibility between a source to

an edge, an edge to another edge, and an edge to a receiver is necessary for

diffraction sound propagation. Source to edge, or receiver to edge visibility is

determined by the adaptive beam tracing algorithm. By tracing beams from either

the source or receiver, visible edges are identified by the beam clipping and

subdivision process; see Ch. 3. On the other hand, edge to edge visibility is a

distinct challenge since it requires computing region to region visibility, rather than

point to region visibility. Several different approaches exist to determine edge to

edge visibility (Cohen-Or et al., 2003). The following discussion is limited to two

different approaches for determining edge to edge visibility.

Various methods exist for determining edge to edge visibility, ranging from the

simple to very complex. A simplistic manner of determining edge to edge visibility

is based upon a ray casting technique from each edge midpoint; refer to Sec. 3.2.4.

If no obstructions exist between each edge midpoint, then the edges are considered

visible. A more accurate method is based on computing conservative from-region

visibility between edges to identify all possible mutually diffracting edges (Antani

et al., 2012). After the conservative from-region visibility computation each
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diffracting edge is subdivided into equal sized segments. Ray casting between each

segment midpoint is conducted in order to determine the mutual visibility of edge

segments. Unobstructed rays between each segment midpoint indicates a visible

edge segment. Visible edge to edge segments give second order diffraction

contributions as in Eq. 2.77. The first approach based upon ray-casting from an

edge midpoint to another edge midpoint is used for visibility testing in the present

study in order to avoid time-consuming computations for from-region visibility, as in

(Antani et al., 2012). A further simplification is to assume each mutually visible

edge is completely visible. Thus, no account is taken of partially visible edges for

second- and higher-order diffraction. This assumption is justifiable when computing

two-dimensional acoustic diffusors since the diffracting edges have a consistent

profile in two-dimensions. Once visibility computations are completed then the

relationships between the source, edges, and receiver are established as a directed

graph; see Fig. 4.1(b). In the directed graph representation the source, diffracting

edges, and receiver are treated as nodes. The sound transmission paths between the

source, edges, and receiver are denoted as directed edges or links in the directed

graph. The computational equivalent of the directed graph is the adjacency matrix.

The adjacency matrix is a graph theoretic data structure which defines the

relationships between nodes of a directed graph (Bang-Jensen and Gutin, 2001,

p. 30). Each entry of the adjacency matrix is either a zero or a one. A entry of one

in the ith row and jth column of the matrix indicates a directed link between the

nodes i and j. The adjacency matrix, formed by edge to edge visibility, is a subset

of the complete adjacency matrix. Provided the source to edge visibility and edge to

receiver visibility information are known, the full adjacency matrix is formed by

including edge to edge visibility. The analog of the adjacency matrix is an incidence

list, which is also known as an adjacency list representation (Bang-Jensen and

Gutin, 2001, p. 30). An incidence list is formed from the adjacency matrix in order
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to facilitate path searching. The ultimate goal is to determine every single path

from the source node to the receiver node based on a user-defined depth. In other

words all paths for n orders of diffraction are formed by the traversal of n+ 1 edges

along the directed graph, from the source to receiver nodes. Such a path is known

as a (s,t)-walk of length n+ 1, where s is the source node and t is the terminal node

(Bang-Jensen and Gutin, 2001, p. 11). The incidence list, formed from the

adjacency matrix facilitates the discovery of sound diffraction paths.

Searching the directed graph for specific paths, with a defined length, is based

on the generated incidence list and two well-known searching algorithms. First, a

modified breadth first search (BFS) is conducted on the incidence list resulting in a

search tree based on the directed graph. Typical BFS algorithms search a directed

graph until all nodes are discovered and then stop (Cormen et al., 2009,

pp. 531–534). Nodes which are discovered are marked as such and only new nodes

are found through the process. The BFS algorithm is modified in the present study

in order to continue searching through the directed graph for a specified depth. The

modified algorithm purposefully forgets nodes discovered in order to trace paths

going over previously visited nodes. Instead of marking a node as visited and

preventing the node from being revisited, the modified algorithm marks a node as

visited and allows the same node to be revisited. Since some edge nodes are directed

to each other, some paths of the search tree will include recurring paths between

edge nodes. This behavior is desirable since any arbitrary order of diffraction is

placed in a search tree by the modified BFS. After a modified BFS is conducted, a

modified depth first search (DFS) is applied to the search tree. Typical DFS

algorithms search a directed graph similar to a BFS (Cormen et al., 2009, pp. 540,

541). The modified DFS begins from the receiver vertex and determines path

sequences to the source vertex for each level of the tree. The search begins at the

receiver node since the receiver typically views less of the total geometric domain
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54 7

S...2 64 S 6 S

Figure 4.2: Partial search tree of a directed graph from Fig. 4.1(b). The partial search
tree is generated by a modified BFS. The depth of search tree is three. Yellow nodes
indicate diffracting wedges. Blue arrows show paths of second-order diffraction. A
DFS begins at the receiver, R, and searches for all paths ending at the source, S, for
a specified depth.

than the source when computing acoustic scattering polar responses; see Sec. 4.4.2.

The search concludes once all valid sequences of the maximum depth are

enumerated. An example of second-order diffraction paths associated with edge six

of Fig. 4.1(a) is illustrated in Fig. 4.2. The directed graph from Fig. 4.1(b) is

converted into a search tree of depth three for the purpose of finding second-order

diffraction paths from the source to the receiver. In the language of graph theory all

(s,t)-walks of length three are determined where the source vertex, s, is the receiver,

and the target vertex, t, is the source. A partial representation of the search tree is

given in Fig. 4.2.

4.3 Digital Synthesis of an Impulse Response

The total sound field is approximated by summing free field, geometric, and

diffraction components of the sound field. In the continuous time-domain the

summation of all three components is represented as,

h(t) = hFF (t) + hGA(t) + hD(t), (4.3)
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where hFF (t) is the free field impulse response, hGA(t) is the geometric impulse

response, and hD(t) is the diffraction impulse response. The summation of acoustic

components is valid for linear acoustics. The free field and geometric sound fields

are determined directly by the beam tracing algorithm; see Ch. 3. The free field

impulse response is simply a scaled Dirac delta function,

hFF (t) =
δ(t−R0/c)

R0

, (4.4)

where δ is the Dirac delta function, and R0 is the distance from the source to

receiver. Specular reflection is accounted for by determining image source

contributions,

hGA(t) =
N∑
n=1

δ(t−Rn/c)

Rn

, (4.5)

where Rn are the distances from image sources to receiver and N is the total

number of image sources. Note, Eq. (4.5) implies acoustically rigid boundary

conditions for reflecting surfaces. The diffraction sound field is approximated by

summing a finite number of diffraction contributions by the secondary source model

for edge diffraction (see Section 2.6),

hD(t) =
K∑
i=1

hD,i(t), (4.6)

where K is the total number of diffraction permutations.

Acoustic scattering by diffusors is approximated by Eq. (4.3) where Eq. (4.6) is

the approximating term. Since scattering by diffusors is limited to a finite number

of reflections Eq. (4.4) satisfies the geometric field exactly. However, a finite-number

of diffraction permutations is accounted for in Eq. (4.6). For example, in the present

study, permutations include any number of geometric reflections proceeding or

succeeding diffraction. However, geometric reflections between diffraction events are
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not accounted for. An extra layer of complexity is required for computing geometric

reflections between diffraction events. Image, or mirrored, edges must be computed

for determining such permutations. Additionally, slope diffraction is neglected

(Summers, 2013) and a finite order of diffraction is computed.

The numerical computation of Eq. (4.3) is synthesized digitally by converting

the continuous-time expressions to discrete-time expressions. The Dirac delta

function in Eqs. (4.4) and (4.5) are converted to a Kronecker delta function, which

is either equal to zero or one when the time delay factor R/c exactly corresponds to

a discrete-time sample. Discrete time expressions for first- and second-order

diffraction are given in Eqs. (2.76) and (2.77), respectively. Generally, the argument

for the Kronecker delta function, associated with either Eq. (4.4) or Eq. (4.5), is

never exactly equal to zero for a discrete-time sample. Oftentimes a fractional delay

is associated with the onset of arrival for a pulse. The arrival time is usually

between two discrete-time samples. The difference between the onset of arrival and

the nearest time sample, prior to the arrival time, is known as the fractional delay.

Thus, it becomes necessary to distribute the impulse contribution over more than

one time sample. Similarly, the discrete-time contribution of diffraction in

Eqs. (2.76) and (2.77) must consider fractional delays.

One approach for handling a fractional delay is to apply a fractional delay (FD)

finite impulse response (FIR) filter, in order to distribute a transient pulse. The low

impulse method is a particular implementation of a FD FIR filter (Peterson, 1986).

A sinc function is Hanning windowed and designed with 40 taps. The Hanning

window is applied to the sinc function in order to reduce Gibbs phenomenon, which

reduces ripples in the frequency response near the Nyquist frequency. The frequency

response of the filter is very good up to 90% of the Nyquist frequency. The trade-off

associated with the filter is the long filter length. Another type of FD FIR filter is

the Lagrange interpolator.
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Design of a maximally flat filter, at zero frequency, results in a filter based on

Lagrange interpolation. The form of the the Lagrange FIR FD filter is (Laakso

et al., 1996),

h[n] =
N∏
k=0
k 6=n

D − k
n− k

for n = 0, 1, 2, ..., N, (4.7)

where N is the filter order, and D is the fractional delay of the signal. The ideal

phase response for a FD FIR filter is linear phase, which means all the frequency

components of a signal have equal delay times. In order to form a Lagrange filter

with the best phase characteristics the fractional delay, D, must be within a certain

range based on the filter order. For an even order filter the optimal fractional delay

is (N/2)− 1 ≤ D ≤ (N/2) + 1, and for an odd order filter the optimal range is

(N − 1)/2 ≤ D ≤ (N + 1)/2 (Välimäki, 1995). A special case of the Lagrange

interpolator is choosing a filter order of one. The resulting filter is the linear

interpolator,

h[0] = 1−D,

h[1] = D, (4.8)

which is suggested by Svensson et al. (1999) for distributing second order diffraction

contributions in Eq. (2.77). The magnitude and phase of the linear interpolator

(N = 1) are shown in Fig. 4.3. Fractional delay values range from 0.0 to 1.0 for each

subfigure. The magnitude response is symmetric for pairs of fractional delays, such

as 0.1 and 0.9, 0.2 and 0.8, and so on. The largest attenuation occurs for a delay

value of 0.5. Linear phase is only preserved for low frequencies. The magnitude

response of the linear interpolator exhibits a low-pass characteristic with a narrow

region that is flat. Improvement of the linear interpolator is possible by extending

the filter order of the Lagrange interpolator. The greatest relative gains, in terms of
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Figure 4.3: First order (N = 1) Lagrange fractional delay finite impulse response
filter (linear interpolator). (a) Magnitude responses for eleven fractional delays, from
0.0 to 1.0. The magnitude responses are symmetric such that a fractional delay of
0.9 overlaps a fractional delay of 0.1. (b) Phase delay responses for eleven fractional
delays, from 0.0 to 1.0.

widening the low-pass band and preserving linear phase, results from increasing the

filter order to three. Figure 4.4 shows the magnitude and phase of the third order

(N = 3) Lagrange interpolator. Compared to the linear interpolator the third order

Lagrange interpolator has a wider low-pass band. For example, given a fractional

delay of 1.5, a 0.1 dB or larger attenuation occurs for frequencies greater than 27%

of the Nyquist frequency. The same attenuation for a linear interpolator, and a

fractional delay of 0.5, occurs for frequencies greater than 10% of the Nyquist

frequency.

Based on the advantages of a short filter length, good low-pass bandwidth, and

linear phase characteristics the third-order Lagrange interpolator is utilized for the

digital synthesis of direct, reflected, second-order diffraction, and higher-order

diffraction impulse responses in the present study. Broadband frequency responses,

with little magnitude and phase distortion, are possible by setting the sampling
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Figure 4.4: Third order Lagrange fractional delay finite impulse response filter. (a)
Magnitude responses for eleven fractional delays, from 1.0 to 2.0. The magnitude
responses are symmetric such that a fractional delay of 1.9 overlaps a fractional delay
of 1.1. (b) Phase delay responses for eleven fractional delays, from 1.0 to 2.0.

frequency to 160 kHz. Frequency responses in the range of 0 to 20 kHz have

negligible magnitude and phase distortion. Digital synthesis of first-order diffraction

is treated separately by increasing the sampling frequency to 800 kHz and

resampling the resulting impulse response down to 160 kHz. The resampling is

necessary in order to combine first-order diffraction impulse responses with other

impulse responses.

4.4 Verification Cases

The fusion of adaptive tetrahedral tracing and a secondary source model for edge

diffraction is numerically validated against three test cases. The adaptive

tetrahedral tracing algorithm, and interface with the edge diffraction model were

coded in MATLAB. The edge diffraction model was coded by Peter Svensson, in

MATLAB. The first test case is on the scattering of a rigid acoustic wedge. The
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second test case is on the scattering of a rigid panel. The third test case is on the

scattering of a triangular diffusor. For the first test case numerical results are

compared against an asymptotic formulation of diffraction. For the last two test

cases numerical results are compared against BEM predictions. The first test case

illustrates the capability of the adaptive tetrahedral tracing procedure to identify

wedge parameters for first order diffraction calculations. The second test case

demonstrates a capability for calculating higher-order diffraction and geometric

reflection. Lastly, the third test case demonstrates the limitations on computing a

finite number of reflection and diffraction permutations.

4.4.1 Rigid Acoustic Wedge

The acoustic scattering of a rigid acoustic wedge, with a closed wedge angle, θWC , of

π/2 is computed with adaptive tetrahedral tracing and a secondary source model for

edge diffraction, and compared with an asymptotic formulation for diffraction

(Pierce, 1974; Hadden, Jr. and Pierce, 1981). The source and receiver have

cylindrical coordinates (rS = 1, θS = 4π/3, zS = 0) and (rR = 3, θR = π/4, zR = 0),

respectively. The diffraction formulation by Pierce (1974) is based on acoustic

diffraction from an infinitely long wedge. The geometry of the tested scenario is

shown in Fig. 4.5.

A portion of the total acoustic field is composed of free field radiation and

geometric propagation, referred hereafter as the geometric acoustic sound field. In

(Pierce, 1974) a time dependence of e−iωt is assumed; however, a time dependence of

ejωt is used for the following variable definitions. Geometric parameters

corresponding to source, receiver, and wedge face angles are the basis for the
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Figure 4.5: Right angled wedge geometry for comparing hybrid method and Pierce’s
formulation for wedge diffraction. The closed wedge angle, θWC , is π/2. The source,
S, has the following cylindrical coordinates: (rS = 1, θS = 4π/3, zS = 0). The
receiver, R, has the following cylindrical coordinates: (rR = 3, θR = π/4, zR = 0).

geometric acoustic sound field (Hadden, Jr. and Pierce, 1981),

θ1 = |θS − θR|, (4.9a)

θ2 = θS + θR, (4.9b)

θ3 = 2θW − (θS + θR), (4.9c)

θ4 = 2θW − |θS − θR|, (4.9d)

where θ1 is the exterior angle formed by the source and receiver, θ2 is the exterior

angle formed by the source reflected about the θ = 0 plane and receiver, θ3 is the

exterior angle formed by the source reflected about the θ = θW plane and receiver,

and θ4 is the exterior angle formed by the source reflected about the θ = θW plane

and the receiver reflected about the θ = 0 plane. Each of the above parameters

corresponds to a component of the geometric sound field. The angle θ1 corresponds

to the direct wave, θ2 corresponds to the wave reflected from the θ = 0 plane, θ3

corresponds to the wave reflected from the θ = θW plane, and θ4 corresponds to the
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wave reflected from the θ = 0 and θ = θW planes. The total geometric sound field,

cast as a Green’s function, is given as a sum of each geometric component,

G(~rS;~rR)G =
4∑
i=1

e−jkRi

Ri

H(π − θi), (4.10)

where GG is the geometric acoustic Green’s function from the source position ~rS to

the receiver position ~rR, H(π − θi) is the Heaviside step function, e−jkRi/Ri

represents a spherically diverging wave, and Ri represents the distance from the

(image) source to the (image) receiver,

Ri =
√
r2
S + r2

R + (zS − zR)2 − 2rRrS cos θi. (4.11)

To complete the computation of the sound field the diffracted sound field must be

considered.

The diffracted sound field is formulated through an asymptotic expansion of a

contour integral. The Green’s function for diffraction is (Pierce, 1974),

G(~rS;~rR)D =
e−jkL0

L0

e−jπ/4√
2

(S+ + S−), (4.12)

where L0 is the least time path from the source to the receiver; see Sec. 2.6.1. The

variable S± = S(θR ± θS) is similar to all other variables with a plus or minus

subscript, and is defined as,

S± =
π(1 + ∆±)W±AD(W±)−∆±

πX±
, (4.13)

where X± = X(θR ± θS), W± = W (θR ± θS), and ∆± = ∆(θR ± θS). Each of the
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variables in S± are defined as,

X(θ) = γMν(θ), (4.14a)

W (θ) = γNν(θ), (4.14b)

∆(θ) =
cos(νπ)

2

cos(νπ)− cos(νθ)

1− cos(νπ) cos(νθ)
, (4.14c)

where ν = π/θW is the wedge index and,

Mν(θ) =
cos(νπ)− cos(νθ)

ν sin(νπ)
, (4.15a)

Nν(θ) =
cos(νπ)− cos(νθ)

ν
√

1− cos(νπ) cos(νθ)
, (4.15b)

γ =

√
2rSrR
λL0

, (4.15c)

where λ = c/f is the acoustic wavelength. The parameter AD(W ) is defined as,

AD(W ) = sign(W )[f(|W |) + jg(|W |)], (4.16)

where the auxiliary Fresnel functions f(W ) and g(W ) are defined in terms of the

Fresnel integrals,

f(W ) = [(1/2)− S(W )] cos([1/2]πW 2)

− [(1/2)− C(W )] sin([1/2]πW 2), (4.17a)

g(W ) = [(1/2)− C(W )] cos([1/2]πW 2)

+ [(1/2)− S(W )] sin([1/2]πW 2), (4.17b)
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and the Fresnel cosine and sine integrals are,

C(W ) =

∫ |W (θ)|

0

cos([1/2]πt2) dt, (4.18a)

S(W ) =

∫ |W (θ)|

0

sin([1/2]πt2) dt. (4.18b)

The Fresnel integrals are computed by adaptive Simpson quadrature (Gander and

Gautschi, 2000). The total sound field is simply a summation of geometric and

diffraction Green’s functions from Eqs. (4.10) and (4.12).

A reasonable comparison between the hybrid method and Pierce’s method,

which assumes an infinite wedge, requires a sufficiently long finite wedge. The reason

is the low frequency response is dictated by the decaying tail of diffraction, which is

affected by the length of the wedge. A longer wedge results in a longer diffraction

tail. A wedge 40 m long was computed with the adaptive tetrahedral tracing edge

diffraction method. The length is sufficiently long such that the frequency response

at low frequencies does not change considerably given a longer wedge.

In order to compare the results against Pierce’s formulation a transfer function

is generated for each respective solution. The transfer function is computed relative

to free field radiation at 1 m. The conversion of the transient impulse response,

Eq. (4.3), to the frequency domain is conducted by a Fast Fourier Transform,

through a MATLAB subroutine. The transfer function relative to free field

radiation at 1 m is computed as,

TF = 20 log10(|H|), (4.19)

where H is either the complex frequency response of the impulse response, or the

summation of Green’s functions from Eqs. (4.10) and (4.12).

Figure 4.6 compares the adaptive tetrahedral tracing and edge diffraction results
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Figure 4.6: Frequency response due to a monopole source located at (rS = 1, θS =
4π/3, zS = 0) and a receiver located at (rR = 3, θR = π/4, zR = 0) in the vicinity
of a rigid right angled wedge, with closed wedge angle, π/2. Adaptive tetrahedral
tracing with edge diffraction (black curve) compared against Pierce’s formulation
(gray curve).

against Pierce’s formulation. A very good agreement between the two methods is

evident for a wide frequency range. Deviation between the two approaches is

apparent for low frequencies, which is expected since Pierce’s formulation is an

asymptotic solution with greater accuracy at high frequencies. The inherent

assumption in Pierce’s formulation is that the source and receiver are at a distance

from the wedge much greater than a wavelength. From this comparison it is clear

that the tetrahedral tracing algorithm is able to identify the diffracting edge and

pass along the wedge parameters to the secondary source model for edge diffraction.
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4.4.2 Rigid Panel

Acoustic scattering of a rigid panel, 3.6 m wide, is compared between the adaptive

tetrahedral tracing edge diffraction method and BEM results (Cox and D’Antonio,

2011). An array of 37 receivers surround the panel, separated at five degree

intervals, 50 m away from the center of the panel. A source is normal to the panel

center and 100 m away. The source and receiver configuration correspond to BEM

calculations (Cox and D’Antonio, 2009, p. 134). The length of the scattering panel

is set to 20 m long in order to compare three-dimensional results (adaptive

tetrahedral tracing and edge diffraction) against two-dimensional results (BEM).

The BEM calculations are based on the thin-panel assumption applied to the

Kirchhoff-Helmholtz equation; see Eq. (2.23). The thin-panel assumption casts the

problem in terms of pressure differences and pressure sums across the thin panel.

The derivative of Eq. (2.23) is used with the original equation in order to

simultaneously solve for pressures at the front and back of a surface (Terai, 1980).

The thin-panel BEM is based on Eqs. (2.29)–(2.31).

A comparison of the adaptive tetrahedral tracing edge diffraction method with

the BEM is made across one-third octave bands. One-third octave band spectra are

computed by a conversion of frequency points corresponding to 1/18-octave band

center frequencies to 1/3-octave band spectra. The 1/18-octave band center

frequencies are computed according to a base ten system (S1, 1986),

fm = fr(U
k), (4.20)

where fm is the center frequency of each 1/18-octave band, fr is the reference

frequency (1000 Hz), k is an integer value, and the frequency ratio U is,

U = 10(3b/10), (4.21)
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where b = 1/18 is known as the bandwidth designator, hence the 1/18-octave band

designation. The integer k ranges from -63 to 57 (121 discrete frequencies) such that

each 1/3-octave band spectra is based on a conversion from 1/18-octave band center

frequencies according to the following sum (Long, 2006, p. 60),

L(f1/3) = 10 log10

′∑
i

10Li(f1/18)/10, (4.22)

where L is the level at either 1/3-octave band center frequencies, f1/3, or

1/18-octave band center frequencies, f1/18, and the prime in the summation

indicates the sum is over seven 1/18-octave band center frequencies centered about

each 1/3-octave band center frequency.

Figure 4.7 shows six 1/3-octave band polar plots for the relative scattered level.

The scattered acoustic pressure level is normalized to the maximum value and offset

by 50 dB. The adaptive tetrahedral tracing edge diffraction method shows good

agreement against the BEM results. Solutions deviate for large scattering angles at

low frequencies. For example, the relative scattered level in the 100 Hz 1/3-octave

band at a scattering angle of 90◦ (also −90◦) exhibits a 13.1 dB discrepancy between

the two prediction methods. Normally, for large scattering angles several orders of

diffraction must be computed in order to minimize the error of the computed sound

field (Chu et al., 2007). At middle to high frequencies the discrepancy between the

relative scattered levels decreases. The difference at the extreme scattering angles

for the 1000 Hz 1/3-octave band is 6.3 dB and for the 8000 Hz 1/3-octave band 0.5

dB. As the frequency increases higher-order diffractions have less of a contribution

to the scattered sound field. The spatial distribution of the scattered sound field is

also indicative of the acoustic wave interaction. For very low frequencies the

wavelength is large relative to the characteristic dimensions of the panel. As a result

for large wavelengths the scattering of the rigid panel becomes more hemispherical,
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resembling point scattering. For higher frequencies a single strong lobe is generated

indicative of the strong specular reflection in the normal direction. The lobe

broadens as the frequency decreases due to the increasing influence of diffraction.

The root-mean-square error (RMSE) is computed between the adaptive

tetrahedral tracing edge diffraction method and the BEM. The RMSE is computed

as,

RMSE(f1/3) =

√√√√{ N∑
i=1

[
LATTED(f1/3)− LBEM(f1/3)

]2}
/N, (4.23)

where N = 37 is the total number of receivers, LATTED is the 1/3-octave band

spectra for the adaptive tetrahedral tracing edge diffraction method, and LBEM is

the 1/3-octave band spectra for the BEM. One-third-octave bands ranging from 100

Hz to 8000 Hz, with various orders of diffraction included in the calculation are

shown in Table 4.1. Generally, the RMSE increases as the frequency decreases. The

result is expected since the inclusion of a finite number of diffraction orders results

in an approximation of the acoustic field. The inclusion of higher orders of

diffraction results in lower RMSE values, which is expected since the approximate

solution converges to the actual sound field by including higher orders of diffraction.

However, little to no reduction in the RMSE is evident by the inclusion of

third-order diffraction. Compared to the peak magnitude of second-order

diffraction, third-order diffraction is two orders of magnitude smaller. However, a

systematic error may be present due to neglecting slope diffraction. Depending

upon the accuracy required, and the problem geometry, calculations including first-

or second-order diffraction may suffice.

4.4.3 Triangular Diffusor

Acoustic scattering of a geometric diffusor is compared between the adaptive

tetrahedral tracing edge diffraction method and the BEM (Cox and D’Antonio,
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Figure 4.7: Relative scattered levels for a rigid panel are compared between adap-
tive tetrahedral tracing edge diffraction results (black curve) and BEM results (gray
curve). The source is normal to the panel. One-third octave band results are shown
in (a) through (f). Up to third-order diffraction is included.
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Table 4.1: Root-mean-square error (RMSE) of the relative scattered pressure levels
for rigid panel scattering between the adaptive tetrahedral tracing edge diffraction
model and the BEM. Source is normal to finite panel.

RMSE [dB]

1/3 Octave Diffraction Order Included
Band [Hz] First Second Third

100 5.9 3.4 3.5
125 4.4 3.2 3.1
160 3.7 2.4 2.4
200 2.4 2.3 2.4
250 1.5 1.0 1.0
315 1.2 1.7 1.7
400 1.6 2.4 2.4
500 1.5 2.2 2.2
630 1.9 2.7 2.7
800 1.2 2.1 2.0
1000 0.8 1.7 1.7
1250 1.1 0.9 0.9
1600 2.4 1.5 1.6
2000 1.0 0.9 0.9
2500 1.2 1.6 1.6
3150 1.6 1.0 1.0
4000 0.6 1.0 1.0
5000 0.6 1.5 1.4
6300 0.8 0.9 0.9
8000 1.1 0.6 0.6
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2011). The geometric diffusor is a triangular diffusor that is 3.66 m wide with three

periods of triangles. Each triangular profile forms an isosceles triangle with two

congruent angles of 18◦ at the base of each triangle. The choice of a triangular

diffusor is motivated by the fact that multiple specular reflections occur and the the

effect of omitting certain permutations of diffraction is illustrated.

Figure 4.8 shows six 1/3-octave band relative scattered levels for the triangular

diffusor. In this particular case the source is oblique to the normal by 57◦. The

overall character of the acoustic scattering is captured at low frequencies; however,

large discrepancies are evident. The reason for the discrepancy must be due to the

omission of certain diffraction permutations. Second-order diffraction that is the

result of one edge scattering event, a reflection, and another edge scattering event

may be particularly important for this geometry. As the frequency increases the

agreement improves for the adaptive tetrahedral tracing edge diffraction method. It

is interesting to note that the main scattering lobe at low frequencies corresponds to

the specular reflection angle; however, a stronger lobe away from the specular angle

exists at higher frequencies. The strong scattering in the direction of −20◦ and

−90◦ is due to the geometry of the triangular profiles. For a normally incident

sound field the primary lobes occur at 36◦ and −36◦, which is twice the acute angle

of each triangle (Cox and D’Antonio, 2009, p. 340). For an oblique incident sound

field it is expected that the lobes have the same relative position with respect to the

scattering angle, which is confirmed in Figs. 4.8(e) and 4.8(f). Based on a

separation of 36◦ from the specular angle it is expected the main lobes to appear at

−21◦ and −93◦. According to Figs. 4.8(e) and 4.8(f) it can be seen that the main

lobes correspond to what is expected geometrically.

The root-mean-square error (RMSE) is computed between the adaptive

tetrahedral tracing edge diffraction method and the BEM. One-third octave bands

ranging from 100 Hz to 8000 Hz, with various orders of diffraction included in the



www.manaraa.com

98

−90◦

−60◦

−30◦0◦
30◦

60◦

90◦
0 20 40

[dB]

(a) 100 Hz

−90◦

−60◦

−30◦0◦
30◦

60◦

90◦
0 20 40

[dB]

(b) 125 Hz

−90◦

−60◦

−30◦0◦
30◦

60◦

90◦
0 20 40

[dB]

(c) 800 Hz

−90◦

−60◦

−30◦0◦
30◦

60◦

90◦
0 20 40

[dB]

(d) 1000 Hz

−90◦

−60◦

−30◦0◦
30◦

60◦

90◦
0 20 40

[dB]

(e) 6300 Hz

−90◦

−60◦

−30◦0◦
30◦

60◦

90◦
0 20 40

[dB]

(f) 8000 Hz

Figure 4.8: Relative scattered levels for a rigid triangular diffusor are compared be-
tween adaptive tetrahedral tracing edge diffraction results (black curve) and BEM
results (gray curve). The source is oblique to the normal at 57◦. One-third octave
band results are shown in (a) through (f). Up to second-order diffraction is included.
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calculation are shown in Table 4.2. Generally, the RMSE increases as the frequency

decreases. The result is expected since the inclusion of a finite number of diffraction

orders results in an approximation of the acoustic field. Compared to the rigid

panel, Table 4.1, the RMSE at high frequencies is consistently 2 dB above. The

inclusion of higher orders of diffraction generally results in lower RMSE values;

however, for very low frequencies inclusion of third-order diffraction increases the

RMSE. This artifact must be due to physically incorrect diffraction paths computed

according to the enumeration procedure in Sec. 4.2. For mid- to high-frequency

computations the adaptive beam tracing edge diffraction method is well-suited for

diffusor scattering prediction.

Table 4.2: Root-mean-square error (RMSE) of the relative scattered pressure levels
for rigid triangular diffusor scattering between the adaptive tetrahedral tracing edge
diffraction model and the BEM. Source is oblique with an angle of incidence 57◦.

RMSE [dB]

1/3 Octave Diffraction Order Included
Band [Hz] First Second Third

100 9.8 7.3 8.9
125 9.3 6.1 8.2
160 10.0 5.5 6.8
200 10.3 5.4 5.7
250 8.1 4.8 4.3
315 7.1 3.6 3.3
400 6.5 4.4 4.1
500 7.0 4.3 4.6
630 6.1 4.1 4.5
800 4.8 4.3 4.8
1000 4.7 4.5 4.4
1250 5.0 5.2 4.9
1600 3.8 3.8 3.8
2000 3.6 3.4 3.1
2500 3.7 3.3 3.2
3150 3.6 3.3 3.3
4000 3.4 3.3 3.2
5000 3.2 3.0 3.0
6300 3.3 3.3 3.3
8000 3.0 3.0 3.0
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4.5 Summary

The compatibility of the adaptive tetrahedral tracing algorithm is based upon a link

that exists between the acoustic mapping and the identification of edge diffraction.

It was shown how wedge parameters are extracted from the acoustic mapping and

passed along to the secondary source model for edge diffraction. Higher-order

diffraction requires a procedure to enumerate the multitude of diffraction paths.

Utilizing the concept of a directed graph and modified graph searching algorithms

the multitude of higher-order diffraction paths are identified. The process of

adaptive tetrahedral tracing results in determining the geometric acoustic field. The

diffracted sound field is computed by the secondary source model for edge

diffraction. The digital synthesis of an impulse response is considered as a linear

combination of the free-field radiation, geometric acoustics, and diffracted sound.

Fractional delays corresponding to exact arrival times are handled by a third-order

Lagrange interpolator. Finally, numerical verification of the combined adaptive

tetrahedral tracing algorithm and secondary source model for edge diffraction is

based upon three test cases. The scattering characteristics of a rigid right-angled

wedge, rigid panel, and rigid triangular diffusor are compared against analytic and

BEM results. It is shown that the adaptive tetrahedral tracing edge diffraction

method is particularly well-suited to compute the scattering characteristics of a

panel and triangular diffusor at mid- to high-frequencies.
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Chapter 5

Goniometer Measurements

The measurement of the scattered impulse response for a diffusor is accomplished

with an instrument known as a goniometer. The principle of the diffusor

measurement is based on estimating the scattered impulse response by deconvolving

the loudspeaker-microphone transfer function from the subtracted impulse response.

The subtracted impulse response is a subtraction of the impulse response with the

diffusor present, and without the diffusor present. The subtraction is conducted in

order to eliminate the direct sound.

In the present study a boundary layer goniometer is employed for the

measurement of acoustic diffusors. The instrument is a fixed semicircular

microphone array with a diffusor at the center of the array and a loudspeaker

outside of the array emitting an interrogating signal; see Fig. 5.2. Two types of

stimuli are tested: a maximum length sequence (MLS) and a logarithmic swept-sine

(LSS). The merits of either signal are compared and contrasted.

Section 5.1 introduces the theoretical concepts that form the basis of a

goniometer measurement. The signal processing involved in the measurement

procedure are shown to produce an estimate of the scattered impulse response of an

acoustic diffusor. In Sec. 5.2 the specific instrumentation of the goniometer is

101
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described. The arrangement of the measurement apparatus is shown in detail. A

comparison between measured polar responses and predicted polar responses, by the

adaptive tetrahedral tracing edge diffraction method, are given in Sec. 5.3. Lastly, a

summary is given in Sec. 5.4.

5.1 Theoretical Aspects of a Goniometer

Measurement

A goniometer is a multi-microphone array that measures the scattered signal of a

diffusor excited by a single loudspeaker. In order to arrive at the scattered polar

response, the scattered impulse response must be estimated from the measurement.

Three essential measurements are necessary for estimating the scattered impulse

response (Cox and D’Antonio, 2009, pp. 111-121). The first measurement is the

loudspeaker-to-microphone measurement. The purpose of the

loudspeaker-to-microphone measurement is to characterize the transfer path

between the loudspeaker and each microphone. This measurement captures the

magnitude and phase distortion introduced by the measurement equipment. The

second measurement, called the sample measurement, is conducted with the diffusor

placed at the center of the microphone array. In this measurement the direct and

scattered signals are measured by the array. The third measurement, called the

background measurement, is conducted with no diffusor present. This last

measurement captures the direct signal measured by the array. Each of these

measurements is fundamental to estimating the scattered impulse response.

5.1.1 Estimation of the Scattered Impulse Response

It is important to stress that the scattered impulse response is an estimated impulse

response. Analysis of the measured signals in the discrete-time domain show how
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the scattered impulse response is estimated. In discrete-time the measured sample

response is denoted as (Hayes, 1996, p. 369),

qs[n] = r[n] ∗ hs[n] + ws[n], (5.1)

where n is the discrete-time sample index, qs is the measured sample response, r is

the loudspeaker-to-microphone response for a given excitation signal, hs is the

sample impulse response, ws is additive noise during the sample measurement, and

the ∗ operator denotes discrete-time convolution. The loudspeaker-to-microphone

response is based upon a convolution of the excitation signal and the

loudspeaker-to-microphone response,

r[n] = s[n] ∗ g[n], (5.2)

where s is the excitation signal, and g is the loudspeaker-to-microphone impulse

response. Similar to the sample measurement the background measurement

response is given as,

qb[n] = r[n] ∗ hb[n] + wb[n], (5.3)

where qb is the measured background response, hb is the background impulse

response, and wb is the additive noise during the background measurement. The

sample impulse response is computed exactly by deconvolving the

loudspeaker-to-microphone response after subtracting the noise from the sample

response,

hs[n] = r−1[n] ∗ (qs[n]− ws[n]), (5.4)

where r−1 is the inverse filter of the loudspeaker-to-microphone response satisfying

the following relationship,

r−1[n] ∗ r[n] = δ[n] (5.5)
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where δ is the Kronecker delta function. Similarly the background impulse response

is computed exactly by a deconvolution,

hb[n] = r−1[n] ∗ (qb[n]− wb[n]). (5.6)

The scattered impulse response is determined exactly by subtracting the sample

impulse response, Eq. (5.4), from the background impulse response, Eq. (5.6),

hsc[n] = hs[n]− hb[n] = r−1[n] ∗ (qs[n]− qb[n]) + r−1[n] ∗ (wb[n]− ws[n]), (5.7)

where hsc is the scattered impulse response.

In practice it is assumed the additive noise in the sample and background

measurements is negligible (AES Standards Committee, 2001). If the signal-to-noise

ratio is high enough, then neglecting noise is a reasonable assumption. The

subtraction process does not completely eliminate the direct and reflected sound due

to time-variance. Instead, the process decreases the contributions of direct and

reflected sound within the scattered impulse response. A rectangular weighting is

then applied to the time region when sound scattering occurs in order to eliminate

to a large extent the direct and reflected sound residuals in the subtracted impulse

response. Hence, the scattered impulse response is estimated as,

ĥsc[n] = w[n](ĥs[n]− ĥb[n]) = w[n]
(
r−1[n] ∗ (qs[n]− qb[n])

)
, (5.8)

where w[n] is a rectangular weighting applied to time samples when acoustic

scattering is present, and the hat above each impulse response indicates an estimate

of the impulse response. Furthermore, the processing of each measured signal is

generally conducted in the frequency domain. For example, the estimated scattered

impulse response is computed in the discrete frequency domain by a N -point
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discrete Fourier transform (DFT) of the respective signals,

Ĥsc[k] =
Qs[k]−Qb[k]

R[k]
=
Qs[k]−Qb[k]

S[k]G[k]
for k = 0,...,N - 1, (5.9)

where the index k corresponds to discrete frequencies. Caution must be exercised

when conducting a deconvolution in the time-domain. Due to the inherent

periodicity of the DFT, the number of points of the DFT, N , must be at least equal

to the signal length of the subtracted measurements plus the signal length of the

loudspeaker-microphone response. The scattered impulse response is then computed

by an inverse DFT of the result in Eq. (5.9). It is preferred to process the signals in

the frequency domain since the division operation effectively deconvolves the

signal(s) in the denominator, which is a faster operation by the Fast Fourier

Transform (FFT) than by deconvolution in the discrete-time domain (Oppenheim

et al., 1999, p. 655).

An important consideration in measuring the scattered signal is the necessary

condition for recovering the scattered impulse response. The arrangement of a

loudspeaker, microphone array, and an acoustic diffusor within a testing space must

be such that no reflections contaminate the time window for acoustic scattering, and

the direct to scattered signals are separated well enough in time. A quasi-anechoic

setup was developed by D’Antonio and Konnert (1992) to satisfy this necessary

condition. Later, the arrangement of the loudspeaker and microphone array was

optimized to maintain a specific specular region width, and a quasi-anechoic

condition (D’Antonio and Rife, 2011). Further details on the quasi-anechoic

conditions are in Sec. 5.2.2.
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5.1.2 Excitation Signal

The choice of excitation signal is particularly important for the estimation of the

scattered impulse response. The ideal signal is broadband in nature, exhibits a high

signal-to-noise ratio, and is short in length. Of the available excitation signals three

general categories exist: periodic signals, transient, and non-transient aperiodic

(Schoukens et al., 1988). Periodic signal types include stepped sinusoid, swept sine,

multisine, periodic noise, maximum length binary sequence, and discrete interval

binary sequence. Transient signal types include impulse and random burst. Lastly,

an aperiodic signal is random noise. A comparison of all the signals mentioned

above shows that deterministic signals such as the swept-sine, multisine, and

maximum length binary sequence are very good at estimating the transfer function

in the presence of a flat noise spectrum (Schoukens et al., 1988).

Early measurements of acoustic diffusors utilized a system employing time-delay

spectrometry (TDS) (D’Antonio and Konnert, 1992). A single microphone was used

for the measurement of a semicircular polar response. The excitation signal in a

TDS measurement is a linearly swept-sinusoidal signal (Müller and Massarani,

2001). The principle behind the measurement technique is based on the modulation

theorem (Oppenheim et al., 1999, pp. 61, 62). A delayed excitation signal is

modulated with the received signal producing sum and difference products of the

signal. If the delay corresponds to the acoustic path of the excitation signal from

the loudspeaker, then the difference product is ideally at the DC frequency.

Low-pass filtering removes the sum product from the frequency response, effectively

isolating the frequency response of the acoustic diffusor. Some drawbacks of the

technique include long measurement times and the delicate setting for the

modulated signal delay (Poletti, 1988). After some time TDS was replaced in favor

of an alternative excitation signal.

The maximum length sequence (MLS) is currently the excitation signal of choice
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for acoustic diffusor measurement (D’Antonio, 1995, pp. 112, 113). The excitation

signal is based on a binary sequence generated by a feedback shift register

(MacWilliams and Sloane, 1976; Vanderkooy, 1994). A MLS is categorized as a

psuedorandom periodic sequence. The signal length is dependent on the order of the

feedback shift register,

L = 2m − 1, (5.10)

where m is the order number, and L is the periodic length of the sequence. The

circular autocorrelation of an MLS signal is nearly a Kronecker delta function and

the energy density spectrum of the circular autocorrelation is white, except at DC

(Vanderkooy, 1994). The advantage of using an MLS signal is the broadband nature

of the signal, and no need for averaging. Furthermore, when compared to TDS the

use of an MLS signal allows quicker measurement times and better frequency

resolution (Vanderkooy, 1994). If the noise spectrum in the measurement is not flat,

then the MLS may be preemphasized in the frequency domain in order to achieve a

uniform signal-to-noise ratio (Mommertz and Müller, 1995). Disadvantages

associated with the use of a MLS signal include the nonuniform distribution of

harmonic distortion in the recovered impulse response, the required fine tuning of

the gain to minimize harmonic distortion and maximize the signal-to-noise ratio,

sensitivity to time-variance, and the enhancement of harmonic distortion by

averaging (Müller and Massarani, 2001; Vanderkooy, 1994). Since the harmonic

distortion is non-uniformly distributed throughout the causal part of the impulse

response, it contaminates the estimated impulse response without remedy

(Vanderkooy, 1994).

Another measurement signal well-suited for acoustic diffusor measurement is the

logarithmic swept-sine (LSS). Similar to the linear swept-sine the logarithmic

swept-sine is a frequency modulated sinusoidal signal with advantageous properties.

The advantages of a LSS signal include a higher signal-to-noise ratio compared to
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MLS, advancing in time harmonic distortion, and a greater insensitivity to

time-variance (Farina, 2000; Müller and Massarani, 2001). The discrete-time

representation of the LSS is (Farina, 2000; Stan et al., 2002),

s[n] = A sin

(
Nωi

fs log(ωf/ωi)

[
en log(ωf/ωi)/N − 1

])
for n = 0,...,N - 1, (5.11)

where N is the total number of samples for the signal, fs is the sampling frequency,

ωi is the initial sweeping frequency in radians per second, and ωf is the final

sweeping frequency. The energy density spectrum of the LSS has a negative slope of

3 dB per doubling of frequency, known as a pink frequency spectrum. The pink

frequency spectrum of the LSS is beneficial when conducting measurements in an

environment with a noise spectrum that increases for lower frequencies. The

harmonic distortion products of a measurement are advanced in time from the

recovered impulse response by a linear deconvolution of the input signal (Müller and

Massarani, 2001). The recovered impulse response is windowed to eliminate the

harmonic distortion.

In the present study both the MLS and LSS signals are used to estimate the

scattered impulse response of acoustic diffusors. A comparison of the two excitation

signals is given in Sec. 5.3.

5.2 Measurement Setup

5.2.1 Measurement Equipment and Arrangement

The experimental setup of the goniometer consists of a desktop computer, a bank of

four multichannel microphone preamplifiers, a power amplifier, a loudspeaker, a 32

microphone array, and a measurement platform; see Fig. 5.1. The desktop computer

is an HP Compaq 6200 Pro SFF PC with a quad-core Intel i5-2400 central
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Figure 5.1: Schematic of experimental arrangement for acoustic diffusor testing. The
desktop computer relays an excitation signal to the master preamplifier, the pream-
plifier outputs the signal to the power amplifier, and the signal is reproduced by the
loudspeaker at S. The 32 electret condenser microphones, R, are connected to each
multichannel preamplifier in groups of eight. The preamplifiers are arranged in a
master-slave relationship as shown and digitally acquire the recorded signal with 24
bits of encoding at a sampling frequency of 48 kHz relaying the digital signals to
the measurement desktop. During a sample measurement, an acoustic diffusor D is
placed at the center of the microphone array of the goniometer.

processing unit having a clock frequency of 3.1 GHz, eight gigabytes of

random-access memory, and a 64-bit Windows 7 operating system. The audio

recording software is a package entitled Reaper, version 4.261/x64. Post-processing

software was written in MATLAB, version 7.8.0 (R2009a). Each microphone

preamplifier is a Motu 8 Pre which contains eight channels providing 48 V of

phantom power to each condenser microphone. The preamplifiers are linked

together in a master-slave relationship with one master preamplifier and three slave

pre-amplifiers. The preamplifiers also work in tandem with the measurement

desktop to acquire signals with 24-bit encoding at a sampling frequency of 48 kHz.

The power amplifier is a Hafler P1000 amplifier, which delivers the excitation signal

to the loudspeaker via the master preamplifier. The loudspeaker is a Bose Jewel

Cube loudspeaker with a two inch driver. Each microphone is a Crown GLE-100

electret condenser microphone. The microphones have an omnidirectional polar

pattern. The measurement platform is 0.21 m thick MDF measuring 4.53 m by 3.63

m.
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Figure 5.2: The goniometer is arranged on a measurement platform measured W =
4.53 m by L = 3.63 m. Thirty-two microphones are placed on an arc with radius
rR = 1.45 m. The microphones have angular positions θR ranging from 10◦ to 165◦

separated by 5◦ increments. The source is placed on an arc with radius rS = 2.12
m. The source is placed at one of the angular positions θS ranging from 30◦ to 150◦

separated by 30◦ increments. The microphone array is displaced from the rear of the
measurement platform by ∆G = 1.32 m.

On top of the measurement platform is situated the microphone array,

loudspeaker, and acoustic diffusor during the sample measurement; see Fig. 5.2.

The microphone array is comprised of 32 microphones arranged in a semicircular

arc. The radius of the array is 1.45 m. Microphones are positioned at angular

positions starting from 10◦ to 165◦ spaced in 5◦ increments. The center point of the

arc is 1.32 m from the rear of the platform and centered along the width of the

platform. The loudspeaker is placed in one of five angular positions pointing

towards the center of the microphone array. Each position is situated at a radial

distance of 2.12 m and the angular positions are separated by 30◦ starting from 30◦

and terminating at 150◦. The front midpoint of an acoustic diffusor is centered in

the microphone array during a sample measurement.
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5.2.2 Quasi-anechoic Conditions

As mentioned in Sec. 5.1.1 it is important that the scattered signal be conducted

under quasi-anechoic conditions. A quasi-anechoic condition is satisfied if the

scattered signal is captured in a time window free of direct sound and room

reflections. The concept of applying a quasi-anechoic measurement for acoustic

diffusors was pioneered by D’Antonio and Konnert (D’Antonio and Konnert, 1992).

The original conception of a quasi-anechoic measurement is based upon an

equivalent idea called the reflection free zone (Cox and D’Antonio, 2009, pp. 113,

114). Ideally, direct sound precedes the onset of the scattered signal by two

milliseconds and room reflections proceeds the onset of the scattered signal by two

milliseconds. The original goniometer geometry could not sufficiently separate the

direct and scattered signals for large scattering angles (D’Antonio and Konnert,

1992). By a process of refinement and lately through numerical optimization the

geometric configuration of the goniometer evolved to the present configuration

shown in Fig. 5.2 (D’Antonio and Rife, 2011).

The quasi-anechoic conditions are analyzed by geometric considerations. The

quasi-anechoic boundary is a surface in space beyond which room reflections occur

two milliseconds after the onset of the scattered signal. Each source to microphone

has a different quasi-anechoic boundary. The derivation of the geometric parameters

for each quasi-anechoic boundary is based upon Fig. 5.3. It is understood that a

source S has the polar coordinates (rS, θS), and a receiver R has the polar

coordinates (rR, θR). A coordinate system is established with its origin at the center

of the microphone array. In a sample measurement a diffusor D is placed at the

origin. It can be assumed that the onset of the scattered signal occurs along a path

from S to D and then D to R, which is denoted as
−−−→
SDR. In order to determine the

quasi-anechoic boundary, it is desired to first compute the corresponding elliptical

parameters associated with the path
−−−→
SDR. It is recognized that the foci of the
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ellipse are S and R. The focal length is denoted as f where twice the focal length is

equal to the distance between S and R, |
−→
SR| = 2f . The center of the ellipse C is

the midpoint of the path
−→
SR. The interior angle associated with ∠SDR is denoted

as α. The interior angle is computed as the absolute difference between θR and θS,

α = |θR − θS|. (5.12)

By the law of sines the interior angle of ∠DSR is computed as,

β = arcsin[rR sin(α)/2f ], (5.13)

where β = ∠DSR. The rotation angle of the ellipse is computed as,

γ =


θS − β if θR − θS ≥ 0,

θS + β if θR − θS < 0.

(5.14)

By the properties of ellipsis the major and minor axis of the ellipse, which

correspond to the rotated and translated coordinate system at C, are computed as,

a =
rS + rR

2
, (5.15)

b =
√
a2 − f 2, (5.16)

where a and b are the lengths of the major and minor axis of the ellipse, respectively.

The ellipse with the parameters computed from Eqs. (5.14)–(5.16) is shown as a

black dashed ellipse in Fig. 5.3. In a large part the generated ellipse is dependent

upon the path lengths from the source to diffusor and diffusor to receiver. In a like

manner the quasi-anechoic boundary is based upon the path lengths from the source
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to diffusor, diffusor to receiver, and a buffer distance based upon the buffer time,

d = cτ, (5.17)

where d is the buffer distance, c is the speed of sound, and τ is the buffer time (4

ms). The buffer time allows for time spreading due to surface scattering and an

allowance for a time window free of reflections. The major axis and minor axis of

the quasi-anechoic boundary is computed similarly to Eqs. (5.15) and (5.16) by

considering the buffer distance,

aQA =
rS + rR + d

2
, (5.18)

bQA =
√
a2
QA − f 2, (5.19)

where aQA and bQA are the lengths of the major and minor axis of the

quasi-anechoic boundary ellipse, respectively. It is important to note that the total

quasi-anechoic boundary is a hemiellipsoid generated as a surface of revolution

about the elliptical major axis. The quasi-anechoic boundary is denoted as a red

dashed ellipse in Fig. 5.3. Thus, for no room reflections to occur within the buffer

time window after the onset of scattering, no reflecting surfaces besides the diffusor

can exist within the hemiellipsoid of the quasi-anechoic boundary. Another

consideration is the time separation between the direct sound and the onset of

scattering. The time separation is based upon the difference in the path lengths
−→
SR

and
−−−→
SDR. In general the buffer time of two milliseconds is satisfied by the

goniometer configuration; however for some particular source and receiver angles the

path length difference corresponds to less than the buffer time. For example, given a

source position at 30◦ and a receiver at 165◦ the path length difference is 0.262 m,

which is a 0.76 ms time difference between the direct and scattered sound.
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Figure 5.3: Quasi-anechoic conditions for the sample measurement. Geometry for
the derivation of the quasi-anechoic boundary. The goniometer measurement consists
of a diffusor located at D, one receiver of 32 shown as R, and the source S. The
quasi-anechoic boundary, denoted as a dashed red ellipse, defines the extent of sound
propagation from S, to a room reflection, and then to R two milliseconds after the on-

set of the scattered response (
−−−→
SDR). The quasi-anechoic boundary is a hemiellipsoid

in three-dimensional space being a surface of revolution about the major axis with a
center at C. The hemiellipsoid has foci at S and R. The positions of the source and
receiver are defined in terms of polar coordinates (rS, θS), and (rR, θR), respectively.
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For room reflections to be delayed in time sufficiently ahead the onset of

scattering, a clear distance must exist around and above the goniometer. Analysis of

the quasi-anechoic boundary leads to the conclusion that the hemiellipsoid is largest

when θR = θS. By Eq. (5.18) the major axis of the hemiellipsoid does not change,

since the buffer distance and the radii of the source and receivers are constant.

However, the minor axis of the hemiellipsoid changes based on a varying focal

length; see Eq. (5.19). The focal length is a minimum when θR = θS. In the

horizontal plane the quasi-anechoic boundary is shown in Fig. 5.4. Around the

measurement platform exists a clear strip of space that is 1.37 m wide. In general

this clear space prevents any room reflections from reaching the receiver within the

buffer time. Vertically, the quasi-anechoic boundary extends to a maximum height

equal to the minor axis of the ellipse, see Eq. (5.19). The height of the measurement

room is 2.43 m and the maximum length of the minor axis is 2.40 m. Thus, the

measurement room is sufficiently large to facilitate a quasi-anechoic measurement.

5.2.3 Excitation Signals

Two excitation signals are used with the goniometer. The traditional MLS is a 17th

order signal that is pre-emphasized. The signal was generated by the software

EASERA version 1.2 (GmbH, 2012, p. 32). The transition frequency of the

pre-emphasized MLS is approximately 350 Hz where the lower frequencies are

emphasized relative to the higher frequencies. Since the MLS is a 17th order signal

by Eq. (5.10) the signal has a length of 131071 samples. At a sampling frequency of

48 kHz this translates into a signal duration of 2.73 seconds. The energy density

spectrum of the MLS is shown in Fig. 5.5. The second excitation signal is a LSS.

The signal length is comparable to the length of the MLS. The signal has a length

of 131072 (217) samples. The initial sweep frequency is 80 Hz and the final sweep

frequency is 24 kHz. The signal is filtered by a second-order Butterworth filter with
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Figure 5.4: The quasi-anechoic boundary is largest when θR = θS. Here the goniome-
ter is shown in the context of the measurement platform and a strip of free space
surrounding the platform. The measurement platform has the following dimensions:
W = 4.53 m by L = 3.63 m. The microphone array is displaced from the rear of the
measurement platform by ∆G = 1.32 m and the strip of free space has a constant
width of ∆ = 1.37 m. The walls of the measurement room are outside the strip of
free space.
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cutoff frequencies at 60 Hz and 23 kHz. The energy density spectrum of the LSS is

shown in Fig. 5.5. The signal energy and energy density spectrum are defined as

(Oppenheim et al., 1999, pp. 60, 621),

E =
N−1∑
i=0

|s[n]|2 =
1

N

N−1∑
k=0

|X[k]|2, (5.20)

where E is the signal energy, the signal is nonzero for the indices zero to N − 1, and

|X[k]|2 is the energy density spectrum. The original intention was to have the signal

energy of the LSS equivalent to the MLS signal. Significant distortion was observed

during the emission of the LSS signal by the loudspeaker. Therefore, the energy of

the LSS signal was reduced by decreasing the amplitude of the signal.

5.2.4 Diffusor Samples

A geometric diffusor and a number theoretic diffusor are the two diffusors of interest

in this study. The geometric diffusor is formed by six periods of extruded triangular

profiles; see Fig. 5.6(a). The cross-section of each profile is an isosceles triangle with

the base measuring 52 mm and the height measuring 26 mm. The length of each

triangular section is 314 mm. A square base is attached to the back of the six

period assembly with a thickness of 19 mm. The number theoretic diffusor is a

quadratic residue diffusor; see Fig. 5.6(b). Three periods of each quadratic residue

diffusor form the complete assembly. The depth of each diffusor is 19 mm, and it is

120 mm square. A 6 mm backing plate holds the three diffusors together. The

depths of the diffusor wells are based upon a seven-period quadratic residue

sequence. The wells are proportional to the sequence of numbers 0, 1, 4, 2, 2, 4, and

1 (Cox and D’Antonio, 2009, p. 291). The well depth associated with the sequence

number one is 4.6 mm. Each diffusor is constructed of different materials. The

geometric diffusor is constructed of wood and the quadratic residue diffusor is
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Figure 5.5: The energy density spectrum of a logarithmic swept-sine signal (gray
curve) and a maximum length sequence signal (black curve).



www.manaraa.com

119

H
W

L

(a)

H

W

L

(b)

Figure 5.6: Geometry of a periodic triangular diffusor and a quadratic residue diffusor.
(a) The overall dimensions of the periodic triangular diffusor are W = 312 mm,
L = 314 mm, and H = 45 mm. (b) One period of the quadratic residue diffusor is
illustrated. The overall dimensions are W = 120 mm, L = 120 mm, and H = 25 mm.

constructed of an epoxy-sealed gypsum powder. The backing plate for each diffusor

assembly is medium-density fibreboard.

5.3 Measurement Results

The scattered impulse response of an acoustic diffusor is measured by a goniometer.

The measurement is conducted at three angles of incidence (90◦, 120◦, and 150◦) for

symmetric samples and five angles of incidence (30◦, 60◦, 90◦, 120◦, and 150◦) for an

asymmetric sample. Since the triangular diffusor and quadratic residue diffusor are

both symmetric samples three angles of incidence are measured. An experimental

comparison of the MLS and LSS excitation signals is given. After, a comparison

between prediction results, generated by the adaptive beam tracing edge diffraction

model, and experimental results based on a MLS excitation is analyzed.

5.3.1 Signal Excitation Comparison

A MLS signal and a LSS signal are both used as stimuli for a goniometer

measurement. Traditionally the MLS has found widespread application for
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measuring the acoustic scattering of diffusors (D’Antonio, 1995, pp. 112, 113). More

recently the LSS has found increasing use in the measurement of room impulse

responses (Stan et al., 2002). It is of interest to compare the scattered polar

responses derived from the scattered impulse responses.

Figs. 5.7 and 5.8 show the relative scattered polar plots of the triangular diffusor

and quadratic residue diffusor for a select number of 1/3-octave band frequencies.

The polar plots are nearly indistinguishable for 1/3-octave bands across the middle

frequencies. For low frequencies inconsistent differences are apparent for the

triangular diffusor. The results generated via a MLS excitation versus the results

generated via a LSS excitation generally have slight differences except at the

extreme ends of the audible frequency spectrum; refer to Figs. 5.7(a), 5.7(b), 5.8(d),

and 5.8(e). It must be emphasized that the frequencies shown in Fig. 5.8 are

frequencies scaled by a factor of five. The actual frequencies for the scaled diffusor

are a factor of five higher than shown. It is conjectured that the primary differences

in the 1/3-octave band frequencies shown is primarily due to the limited bandwidth

of the LSS signal, or the relative differences in the spectral energy; refer to Fig. 5.5.

Particularly, at the low and high ends of the frequency spectrum it is conceivable

that major differences are expected for such large differences between the LSS signal

spectrum and MLS signal spectrum. An additional factor is the very low signal to

noise ratio available at the low end of the frequency spectrum. The driver of the

loudspeaker is small enough to be a poor radiator of sound energy at low frequencies.

To quantify the relative differences of the scattered polar plots, the average

relative difference is defined. The average relative difference is defined as,

ARD =
1

M

M∑
i=1

LMLS,i − LLSS,i
(LMLS,i + LLSS,i)/2

, (5.21)

where ARD is the average relative difference, LMLS,i is the relative scattered level
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Figure 5.7: Experimental relative scattered levels for a triangular diffusor are com-
pared between a MLS signal (black curve) and a LSS signal (gray curve). The source
is incident from a polar angle of 30◦. One-third octave band results are shown in (a)
through (f).
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Figure 5.8: Experimental relative scattered levels for a quadratic residue diffusor are
compared between a MLS signal (black curve) and a LSS signal (gray curve). The
source is incident from a polar angle of 30◦. One-third octave band results are shown
in (a) through (f).
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at a specific 1/3-octave band frequency and receiver position for a MLS signal

excitation, LLSS,i is the relative scattered level at a specific 1/3-octave band

frequency and receiver position for a LSS signal excitation, and M is the total

number of receivers (32 in this case). Tables 5.1 and 5.2 show the average relative

difference of the scattering by a triangular diffusor and the quadratic residue

diffusor, respectively. Three columns are tabulated for source angles of incidence

30◦, 60◦, and 90◦. The 100 Hz 1/3-octave band, in Table 5.1, shows a large

inconsistency across the source angles of incidence. A possible source for this

inconsistency is an increase of background noise stemming from mechanical building

HVAC equipment. In contrast, from 125 Hz and upwards the average relative

differences are fairly consistent across the three source angles of incidence. From 125

Hz and upward the average relative difference diminishes for increasing frequency

eventually leveling off. Unlike the triangular diffusor the average relative difference

increases as the frequency increases for the quadratic residue diffusor; refer to Table

5.2. In spite of the contradictory trends in the average relative difference, the polar

plots in Figs. 5.7 and 5.8 indicate a scaling error at high frequencies for the

quadratic residue diffusor and a low signal to noise ratio at the low frequency for the

triangular diffusor. Despite the LSS signal having less signal energy, as defined by

Eq. (5.20) and compared to the MLS signal, a good agreement exists between the

relative scattered levels derived by either excitation signal.

5.3.2 Prediction and Measurement Comparison

A comparison between the adaptive beam tracing edge diffraction model and the

goniometer measurement of the triangular diffusor tested serves the purpose of

numerical validation. The essential details of the goniometer measurement are

modeled. The geometry of the diffusor, extent of the measurement platform, source

positions, and receiver positions are modeled. The comparison is qualitatively
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Table 5.1: Average relative difference for relative scattered levels of a triangular
diffusor measured by MLS and LSS.

1/3-Octave Angle of Incidence

Band [Hz] 30◦ 60◦ 90◦

100 2.38 4.87 2.32
125 0.27 0.21 0.37
160 0.16 0.12 0.18
200 0.14 0.08 0.14
250 0.11 0.07 0.10
315 0.08 0.06 0.07
400 0.05 0.05 0.04
500 0.03 0.02 0.03
630 0.02 0.02 0.03
800 0.02 0.02 0.03
1000 0.02 0.02 0.03
1250 0.01 0.02 0.03
1600 0.02 0.02 0.03
2000 0.02 0.02 0.03
2500 0.01 0.02 0.03
3150 0.01 0.02 0.02
4000 0.01 0.02 0.03
5000 0.01 0.03 0.03
6300 0.02 0.02 0.02
8000 0.01 0.02 0.02
10000 0.01 0.04 0.02
12500 0.02 0.02 0.02
16000 0.03 0.02 0.03
20000 0.03 0.02 0.03
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Table 5.2: Average relative difference for relative scattered levels of a quadratic
residue diffusor measured by MLS and LSS. The frequencies are scaled down by
a factor of five due to the scale size of the sample.

1/3-Octave Angle of Incidence

Band [Hz] 30◦ 60◦ 90◦

100 0.07 0.06 0.03
125 0.06 0.05 0.03
160 0.04 0.04 0.03
200 0.02 0.03 0.03
250 0.02 0.02 0.03
315 0.01 0.01 0.03
400 0.01 0.01 0.02
500 0.01 0.01 0.02
630 0.01 0.01 0.02
800 0.01 0.01 0.02
1000 0.01 0.02 0.02
1250 0.02 0.03 0.03
1600 0.02 0.03 0.03
2000 0.02 0.03 0.04
2500 0.05 0.06 0.07
3150 0.08 0.10 0.12
4000 0.11 0.14 0.17
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analyzed by an examination of the relative scattered level polar plots and the

root-mean-square error between the predicted and measured results.

Figure 5.9 shows the relative scattered levels determined by experiment and

prediction. The source is incident from an angle of 30◦. Up to second-order

diffraction is computed. The agreement between experiment and prediction is best

at the 4000 Hz 1/3-octave band and gradually declines for lower 1/3-octave band

frequencies. The departure from agreement is attributed to two factors, and

possibly an additional third factor: the increasing importance of higher-order

diffraction, the omission of reflection-diffraction combinations, and diaphragmatic

absorption. Higher-order diffraction plays an essential role in the scattered field for

low frequencies (Chu et al., 2007). In a similar vein the omission of

reflection-diffraction combinations affects the magnitude of the scattered sound

field. For example, the mechanism of wedge diffraction, reflection, and wedge

diffraction is omitted, which may play an essential role in predicting the magnitude

of the scattered sound field accurately at mid-frequencies. Lastly, diaphragmatic

absorption possibly explains the reduced experimental magnitude of the scattered

field at low frequencies (D’Antonio and Konnert, 1992). Since, the prediction

assumes a perfectly rigid surface, no acoustic absorption is accounted for.

The root-mean-square error (RMSE) of the relative scattered levels between the

experimental results and prediction results are tabulated in Table 5.3. The RMSE is

greatest at low frequencies with the exception of 100 Hz, and 125 Hz 1/3-octave

bands. The importance of including higher-order diffraction, and additional

reflection-diffraction combinations is stressed by the high RMSE below 1000 Hz,

which is greater than or equal to 10.0 dB for the 1/3-octave bands 160 Hz to 800

Hz. The magnitude of the RMSE is smaller for 1000 Hz and above, however, the

values do not monotonically decrease to zero as the frequency increases. It is

conjectured that as the frequency increases the directivity of the loudspeaker limits
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Figure 5.9: Experimental (black) versus predicted (gray) relative scattered levels for
a periodic triangular diffusor. The source is incident from a polar angle of 30◦. Up to
second-order diffraction is computed in the prediction. One-third octave band results
are shown in (a) through (f).
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the agreement between prediction and measurement.

Table 5.3: Root-mean-square error of the relative scattered levels between prediction
and experiment for a triangular diffusor. The diffusor is composed of six periodic
triangles with base angles of 45◦. The source is incident from a polar angle of 30◦.
The prediction includes up to second-order diffraction.

1/3-Octave
Band [Hz] RMSE [dB]

100 4.9
125 8.7
160 12.2
200 17.6
250 19.2
315 17.4
400 15.7
500 14.3
630 13.7
800 10.0
1000 8.1
1250 7.7
1600 6.4
2000 5.0
2500 5.5
3150 5.9
4000 3.6
5000 5.2
6300 4.4
8000 7.0

5.4 Summary

The theoretical aspects of a goniometer measurement show that the measurement

estimates the scattered impulse response by a subtraction and deconvolution

method. The method involves measuring a sample response, a background response,

subtracting the two impulse responses, and deconvolving the loudspeaker to

microphone impulse response. Since it is assumed that the signal to noise ratio is

high, the noise is neglected and the scattered impulse response is estimated.
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The goniometer measurement involves various experimental apparatus. The

goniometer itself consists of a measurement platform, a 32 microphone array, and a

loudspeaker. The microphone array is powered by a bank of four preamplifiers in a

master-slave setup, and the loudspeaker is powered by a power amplifier. The power

amplifier is connected to the master preamplifier and the four preamplifiers are

connected to a measurement desktop. Physical considerations are taken into

account for the purpose of conducting a measurement in a quasi-anechoic condition.

It is verified that quasi-anechoic conditions are present during a measurement with

the exception of a few source and receiver angles.

Measurement of acoustic scattering by a geometric diffusor and a number

theoretic diffusor is conducted with two types of excitation signals. The MLS and

LSS excitation signals are compared in a relative sense for the relative scattered

levels derived from the measurement. In spite of containing less energy the

employed LSS signal resulted in measurements that agree very well with the MLS

measurements over several 1/3-octave band frequencies. The largest relative

differences are for low frequencies. Finally, a numerical validation of the prediction

model, developed in this dissertation, is conducted with the result that predictions

are best suited for high frequencies.
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Conclusions

The purpose of the present study is to investigate the capabilities and limitations of

a combined adaptive tetrahedral tracing and edge diffraction model. The case study

of interest is the prediction of scattering by diffusors. Viewing an acoustic diffusor

as an ensemble of finite reflective surfaces comprised of scattering wedges leads to a

particularly useful approach. Three challenges exist in the realization of this

modeling approach. The first challenge is determining, and if applicable defining,

the geometric acoustics model appropriate for diffusor scattering predictions. The

second challenge is to identify and define an interface between the geometric

acoustic model and a edge scattering model. Lastly, the third challenge is to

numerically verify, and validate the proposed approach.

6.1 General Conclusions

The first research challenge is to identify, and if necessary define, a relevant

geometric acoustics model for the combined model. Of the available techniques, the

adaptive beam tracing model shows the greatest promise since it maps the incident

and reflected sound fields in a continuous manner. The advantage of mapping the

incident and reflected sound fields continuously is evident by the capability to

130
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identify scattering wedge parameters. The relevant literature on acoustic adaptive

beam tracing omits several algorithmic aspects crucial for the physically correct

mapping of incident and reflected sound fields. Upon further investigation the

necessary elements were derived for the model and the algorithm termed adaptive

tetrahedral tracing. The fundamental algorithmic procedures include ensonification

mapping, occlusion mapping, and the subdivision of the total ensonification

mapping (for further details see Sec. 3.2). An added advantage of adaptive

tetrahedral tracing is the ability to map the incident and reflected sound fields on

the boundaries of the geometric domain. This characteristic establishes a vital

interface for an edge scattering model.

The second challenge is to identify and define an interface between the geometric

acoustic model and an edge scattering model. The adaptive tetrahedral tracing

algorithm maps the incident and reflected acoustic sound fields on the boundaries of

the geometric domain. Once the mapping is established a system identifies the

diffracting edges. The parameters of each scattering wedge are extracted from the

acoustic mapping and funneled to the edge scattering model. Geometric parameters

such as the wedge angle, relative cylindrical coordinates of the source and receiver,

and extent of the ensonified edge are extracted from the acoustic mapping.

Higher-order diffraction is treated from the perspective of graph-theory.

Permutations of reflection and diffraction are enumerated through modified

graph-theoretic search procedures. Details are provided in Secs. 4.1 through 4.3.

The third and final challenge is to numerically verify, and validate the combined

adaptive tetrahedral tracing edge diffraction model. The model is numerically

verified against three scattering geometries. Overall the agreement against analytic

and boundary element predictions (BEM) predictions is good. It is determined that

as the geometry of the diffusor becomes more complex, then a greater need for

higher-order diffraction and additional diffraction-reflection permutations are
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necessary to correctly model wave propagation at low frequencies; see Sec. 4.4.

Numerical validation is conducted against goniometer measurements of two

geometric diffusors. The resulting comparisons between prediction and experimental

results suggests that the model requires higher-order diffraction and additional

diffraction-reflection permutations for broadband predictions; see Sec. 5.3.2.

Additionally, part of the experimental portion involves an investigation into

measurements with two different stimuli. Traditionally the maximum length

sequence (MLS) is used most widely in the measurement of acoustic diffusors. It is

of interest to examine an alternative stimuli, specifically the logarithmic swept-sine

(LSS). The choice of a LSS stimuli is motivated by the fact that the method rejects

harmonic distortion, and is capable of conducting measurements at a higher signal

to noise ratio. Measurements of acoustic diffusors show that the LSS stimuli is an

acceptable signal type since very good agreement exists for the scattered polar

responses over a large frequency range when compared against measurements with

MLS stimuli; see Sec. 5.3.1.

6.2 Present Challenges and Opportunities

Several opportunities are available to extend the adaptive tetrahedral tracing and

edge diffraction model. One particular challenge is to dynamically identify geometry

that would otherwise go undetected by the model; see Fig. 3.1(b) for an example.

Small geometric features relative to the propagating tetrahedral cross-section result

in one type of acoustic aliasing. Drumm and Lam (2000) claim that their algorithm

identifies geometric features wholly contained within a beam, but no substantial

details exist on how to dynamically identify such a scenario. The solution proposed

in this study is to increase the beam density ensuring that this type of acoustic

aliasing is avoided. However, this solution is far from ideal since it is based on a
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trial and error process.

Another challenge is to model additional reflection-diffraction permutations. For

example, the inclusion of diffraction, reflection, and diffraction combinations may

improve the agreement between predictions and experiment. The challenge of

computing such combinations includes modeling image edges instead of image

source, and computing from region visibility (Antani et al., 2012). In the present

study it is assumed that mutually visible edges are completely visible to one

another. A from region visibility computation where the mutual visibility of edges

are considered would correct that assumption. Furthermore, the secondary source

model for edge diffraction does not account for slope diffraction (Summers, 2013).

Slope diffraction is an important component of the sound field generated by wave

guides (Mentzer et al., 1975). The quadratic residue diffusor and other diffusors

that exhibit semi-enclosed volumes act as acoustic wave guides. Current models

that compute electromagnetic slope diffraction in the time-domain may be

applicable to sound propagation (Rousseau and Pathak, 1995).

Geometric domains that contain many polygons present a particular

computational bottleneck for naive ray-polygon intersection queries. Approximately

only half of the polygons are discarded based on the directional vector of the ray

and each polygon normal. A major improvement to the adaptive tetrahedral tracing

algorithm is accelerating ray-polygon intersection tests. The most notable

techniques for accelerating ray-polygon intersection queries are kd-tree traversal and

binary space partitioning. Binary space partitioning is used by Funkhouser et

al. (2004) in a beam tracing algorithm for purpose of computing real-time

auralizations. Binary space partitioning splits the geometric domain into convex

parallelepipeds and constrains the query space to a subset of the total geometric

domain. Another technique well-suited to adaptive tetrahedral tracing is kd-tree

traversal (Overbeck et al., 2007; Hapala and Havran, 2011). Similar to binary-space
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partitioning the geometric domain is split into cells that subdivide the geometric

domain, which accelerates the ray-polygon query.

Lastly, modeling acoustic impedance in the time-domain is a current challenge

with some approaches suggested within the literature. Going beyond rigid or

anechoic boundaries requires special considerations: for example, how to model the

multiple convolutions that physically occur during beam-boundary interactions.

Work applied to the finite difference time-domain method (Kowalczyk and van

Walstijn, 2008a,b) may find application with adaptive tetrahedral tracing. Plus,

diffraction of general impedance wedges is as of now an open problem. The closest

solution was developed for an isovelocity wedge with varying densities (Chu, 1989).
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frequency dependent boundary conditions in an acoustic finite-difference

time-domain model. Journal of Sound and Vibration, 316(15):234–247, 2008.

Angelo Farina. Simultaneous measurement of impulse response and distortion with

a swept-sine technique. 2000.

T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pingali,

P. Min, and A. Ngan. A beam tracing method for interactive architectural

acoustics. Journal of the Acoustical Society of America, 115(2):739–756, 2004.

W. Gander and W. Gautschi. Adaptive quadrature - revisited. BIT, 40(1):84–101,

2000.

Dan Givoli. Numerical methods for problems in infinite domains, volume 33.

Elsevier, Amsterdam, 1992.

AFMG Technologies GmbH. Easera tutorial. Technical Report EASERA 1.2,

AFMG Technologies GmbH, 2012.

Oriol Guasch and Lluis Cortes. Graph theory applied to noise and vibration control

in statistical energy analysis models. The Journal of the Acoustical Society of

America, 125(6):3657–3672, 2009.

W. James Hadden, Jr. and Allan D. Pierce. Sound diffraction around screens and

wedges for arbitrary point source locations. The Journal of the Acoustical Society

of America, 69(5):1266–1276, 1981.

Thorkild Hansen and Arthur D. Yaghjian. Plane-wave theory of time-domain fields:

near-field scanning applications. IEEE Press, New York, NY, 1999.



www.manaraa.com

140

M. Hapala and V. Havran. Review: Kd-tree traversal algorithms for ray tracing.

Computer Graphics Forum, 30(1):199–213, 2011.

Jonathan A. Hargreaves and Trevor J. Cox. A transient boundary element method

model of schroeder diffuser scattering using well mouth impedance. The Journal

of the Acoustical Society of America, 124(5):2942–2951, 2008.

T. Hargreaves, T. Cox, Y. Lam, and P. D’Antonio. Surface diffusion coefficients for

room acoustics: Free-field measures. The Journal of the Acoustical Society of

America, 108(4):1710–1720, 2000.

M. H. Hayes. Statistical digital signal processing and modeling. John Wiley & Sons,

New York, 1996.

Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In

SIGGRAPH ’84: Proceedings of the 11th annual conference on Computer graphics

and interactive techniques, pages 119–127, New York, NY, USA, 1984. ACM.

K. Ito. Encyclopedic Dictionary of Mathematics: The Mathematical Society of

Japan, volume 1. MIT Press, 1993.

Cheol-Ho Jeong. Absorption and impedance boundary conditions for phased

geometrical-acoustics methods. The Journal of the Acoustical Society of America,

132(4):2347–2358, 2012.

Wayne A. Kinney, C. S. Clay, and Gerald A. Sandness. Scattering from a

corrugated surface: Comparison between experiment, helmholtz–kirchhoff theory,

and the facet-ensemble method. The Journal of the Acoustical Society of

America, 73(1):183–194, 1983.

Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, and James V. Sanders.

Fundamentals of acoustics. Usa, John Wiley & Sons. Inc., fourth edition, 2000.



www.manaraa.com

141

R. G. Kouyoumjian and P. H. Pathak. A uniform geometrical theory of diffraction

for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11):

1448, 1974.

Konrad Kowalczyk and Maarten van Walstijn. Modeling frequency-dependent

boundaries as digital impedance filters in fdtd and k-dwm room acoustics

simulations. J.Audio Eng.Soc, 56(7/8):569–583, 2008a.

Konrad Kowalczyk and Maarten van Walstijn. Formulation of locally reacting

surfaces in fdtd/k-dwm modelling of acoustic spaces. Acta Acustica united with

Acustica, 94(6):891–906, 2008b.

Andrzej Kulowski. Algorithmic representation of the ray tracing technique. Applied

Acoustics, 18(6):449–469, 1985.

T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine. Splitting the unit delay

[fir/all pass filters design]. Signal Processing Magazine, IEEE, 13(1):30–60, 1996.

H. Lehnert. Systematic-errors of the ray-tracing algorithm. Applied Acoustics, 38

(2-4):207–221, 1993.

T. Lewers. A combined beam tracing and radiant exchange computer-model of

room acoustics. Applied Acoustics, 38(2-4):161–178, 1993.

Marshall Long. Architectural acoustics. Elsevier/Academic Press, Amsterdam ;

Boston, 2006.

Charles Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,

University of Utah, 1987.

R. J. Lucas and V. Twersky. Coherent response to a point source irradiating a rough

plane. The Journal of the Acoustical Society of America, 76(6):1847–1863, 1984.



www.manaraa.com

142

H. M. Macdonald. A class of diffraction problems. Proceedings of the London

Mathematical Society, 14(1):410–427, 1915.

F. J. MacWilliams and N. J. A. Sloane. Pseudo-random sequences and arrays.

Proceedings of the IEEE, 64(12):1715–1729, 1976.

Z. Maekawa. Noise reduction by screens. Applied Acoustics, 1(3):157, 1968.

H. Medwin. Shadowing by finite noise barriers. The Journal of the Acoustical

Society of America, 69(4):1060–1064, 1981.

Herman Medwin, Emily Childs, and Gary M. Jebsen. Impulse studies of double

diffraction: A discrete huygens interpretation. The Journal of the Acoustical

Society of America, 72(3):1005–1013, 1982.

C. Mentzer, L. Peters Jr., and R. Rudduck. Slope diffraction and its application to

horns. Antennas and Propagation, IEEE Transactions, 23(2):153–159, 1975.

E. Mommertz and Swen Müller. Measuring impulse responses with digitally

pre-emphasized pseudorandom noise derived from maximum-length sequences.

Applied Acoustics, 44(3):195–214, 1995.

Swen Müller and Paulo Massarani. Transfer-function measurement with sweeps.

Journal of the Audio Engineering Society, 49(6):443–471, 2001.

Jorge C. Novarini and Herman Medwin. Computer modeling of resonant sound

scattering from a periodic assemblage of wedges: Comparison with theories of

diffraction gratings. The Journal of the Acoustical Society of America, 77(5):

1754–1759, 1985.

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-time signal

processing. Prentice Hall, Upper Saddle River, N.J., 2 edition, 1999.



www.manaraa.com

143

Joseph O’Rourke. Computational geometry in C. Cambridge University Press,

Cambridge UK, 2 edition, 1998.

Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. A real-time beam tracer

with application to exact soft shadows. In EuroGraphics Symposium on

Rendering, June 2007.

P. Peterson. Simulating the response of multiple microphones to a single acoustic

source in a reverberant room. The Journal of the Acoustical Society of America,

80(5):1527–3, 1986.

Allan D. Pierce. Diffraction of sound around corners and over wide barriers. The

Journal of the Acoustical Society of America, 55(5):941–955, 1974.

Sylvain Pion and Monique Teillaud. 3D Triangulations. CGAL Editorial Board, 4.3

edition, 2013.

Mark A. Poletti. Linearly swept frequency measurements, time-delay spectrometry,

and the wigner distribution. Journal of the Audio Engineering Society, 36(6):

457–468, 1988.

J. Redondo, R. Pico, B. Roig, and M. R. Avis. Time domain simulation of sound

diffusers using finite-difference schemes. Acta Acustica united with Acustica, 93

(4):611–622, 2007.

Christoph Richter, Junis Abdel Hay,  Lukasz Panek, Norbert Schönwald, Stefan

Busse, and Frank Thiele. A review of time-domain impedance modelling and

applications. Journal of Sound and Vibration, 330(16):3859–3873, 2011.

P. R. Rousseau and P. H. Pathak. Time-domain uniform geometrical theory of

diffraction for a curved wedge. Antennas and Propagation, IEEE Transactions, 43

(12):1375–1382, 1995.



www.manaraa.com

144

S1. American national standard specification for octave-band and

fractional-octave-band analog and digital filters. Technical Report ANSI

S1.11-1986, American Institute of Physics, 1986.

H. Schenck. Improved integral formulation for acoustic radiation problems. The

Journal of the Acoustical Society of America, 44(1):41–18, 1968.

J. Schoukens, R. Pintelon, E. van der Ouderaa, and J. Renneboog. Survey of

excitation signals for fft based signal analyzers. Instrumentation and

Measurement, IEEE Transactions on, 37(3):342–352, 1988.

M. R. Schroeder. Diffuse sound reflection by maximum - length sequences. The

Journal of the Acoustical Society of America, 57(1):149–150, 1975.

M. R. Schroeder. Binaural dissimilarity and optimum ceilings for concert halls:

More lateral sound diffusion. The Journal of the Acoustical Society of America,

65(4):958–963, 1979.

M. R. Schroeder and R. Gerlach. Response to “comments on ’diffuse sound

reflection by maximum length sequences’ ”. The Journal of the Acoustical Society

of America, 60(4):954, 1976.

A. Sommerfeld and R. J. Nagem. Mathematical Theory of Diffraction: Based on

Mathematische Theorie Der Diffraction. Birkhäuser, 2004.
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